화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.5, 456-470, October, 2013
NF용 중공사 분리막의 발전
Progress of Nanofiltration Hollow Fiber Membrane
E-mail:,
초록
중공사형 막은 지난 수십 년간 빠르게 성장하고 있는 새로운 기술의 하나이다. 또한, 고분자 소재를 이용한 분리막은 기체분리, 연료전지, 수처리, 폐수처리, 유기물 분리 등 여러 분야에서 주목 받고 있다. 그중에서도 액체분리용 역삼투(RO)와 한외여과(Ultrafiltration)막의 중간 특성을 갖는 나노여과(Nanofiltration)막은 상대적으로 역삼투 막에 비하여 낮은 투자비와 낮은 운전압력, 높은 투과 성능을 가지며 다가 음이온 염과 200∼1000 gmol^(-1)사이의 유기물에 대한 높은 제거율을 갖는 막이다. 본 논문에서는 NF 중공사 분리막의 소재, 제조 방법(상전이법과 계면중합법)에 따른 멤브레인의 구조 제어 및 다양한 특성 평가에 관한 연구동향을 살펴보고자 한다. 현재 대부분의 NF용 분리막은 평막형(plate and frame type)이나 나권형(spiral wound type)으로 제품화 되고 있는데, 중공사형(hollow-fiber type)의 제품화가 지연되고 있는 것은 기존 소재를 바탕으로 제조할 경우 강도면에서 안정적이지 못한 면이 있으므로 새로운 소재를 개발하거나 기존 소재의 개선이 필요할 것으로 보인다. 이러한 부분을 보완할 수 있을 만한 제조 기술이 확보된다면 중공사 형태의 나노여과막이 점차 나권형막을 대체하여 시장에서 높은 점유율을 나타낼 수 있을 것이다.
Hollow-fiber membranes, is one of the new technologies that is growing rapidly in the past few decades. In addition, separation membranes using polymer materials, have attracted attentions in various fields including gas separation, fuel cells, water treatment, wastewater treatment, and organic separation. Nanofiltration (NF) membranes having the separation characteristics in the intermediate range between ultrafiltration and reverse osmosis (RO) membranes for liquid separation, with relatively low investment cost and operating pressure lower than that of RO membranes, have high permeance and rejection performance of multivalent ions as well as organic compounds of molecular weight between 200∼1000 gmol^(-1). In this paper, we would like to review the research trends on the various structure control and characterization of NF hollow fiber membranes with respect to materials and the methods of preparation (phase inversion method and interfacial polymerization method). Currently, most of NF membranes have been manufactured by plate and frame types or spiral wound types. But hollow fiber types have delayed in commercial products, because of the weak strength when to produce on the basis of the existing materials, therefore the development of new materials or improvement of existing materials will be needed. If improving manufacturing technology is available, hollow fiber types will replace spiral wound types and gradually show a higher market share.
  1. Munir Cheryan, Ultrafiltration and microfiltration handbook, University of lllionois Urbano, Technomic Publishing Company, Inc., USA (1998)
  2. Marcel Mulder, Basic Principles of Membrane Technology, Kluwer academic publishers, Netherlands (1996)
  3. Sun SP, Hatton TA, Chan SY, Chung TS, J. Membr. Sci., 401, 152 (2012)
  4. Cha BJ, Chi SD, Kim JH, Korean Ind. Chem. News, 14(6), 2 (2011)
  5. Kim IC, Lee KH, Desalination, 192(1-3), 246 (2006)
  6. Choi IH, Kim IC, Min BR, Lee KH, Membrane Journal., 17, 244 (2007)
  7. Feng CY, Khulbe KC, Matsuura T, Ismail AF, Sep. Purif. Technol., 111, 43 (2013)
  8. Schafer AI, Fane AG, Waite TD, Nanofiltration-Princioles and Applications, Elsevier, Amsterdam (2005)
  9. Adham S, Gagliardo P, Membrane Bioreactors for Water Repurification-Phase I, Desalination Research and Development Program Report No. 34, Project No. 1425-97-FC-81-30006J, Bureau of Reclamation, November (1998)
  10. Li YL, Tung KL, J. Membr. Sci., 319(1-2), 286 (2008)
  11. 한국막학회, 막분리(기초), 자유 아카데미, 한국
  12. Kim IC, Lee KH, Tak TM, J. Membr. Sci., 183(2), 235 (2001)
  13. Peng N, Widjojo N, Sukitpaneenit P, Teoh MM, Lipscomb GG, Chung TS, Lai JY, Progress in Polymer Science., 37, 1401 (2012)
  14. Cha BJ, Chi SD, Polymer Science and Technology., 22, 553 (2011)
  15. Wang KY, Chung TS, J. Membr. Sci., 281(1-2), 307 (2006)
  16. Lv JW, Wang KY, Chung TS, J. Membr. Sci., 310(1-2), 557 (2008)
  17. Sun SP, Wang KY, Peng N, Hatton TA, Chung TS, J. Membr. Sci., 363(1-2), 232 (2010)
  18. Bolong N, Ismail AF, Salim MR, Rana D, Matsuura T, Tabe-Mohammadi A, Sep. Purif. Technol., 73(2), 92 (2010)
  19. Lau WJ, Ismail AF, Misdan N, Kassim MA, Desalination., 287, 190 (2012)
  20. Kim IC, Jeong BR, Kim SJ, Lee KH, Desalination., 308, 111 (2013)
  21. He T, Frank M, Mulder MHV, Wessling M, J. Membr. Sci., 307(1), 62 (2008)
  22. Liu Y, He BQ, Li JX, Sanderson RD, Li L, Zhang SB, J. Membr. Sci., 373(1-2), 98 (2011)
  23. Sun SP, Hatton TA, Chung TS, Environ. Sci. Technol., 45, 4003 (2011)
  24. Maurya SK, Parashuram K, Singh PS, Ray P, Reddy AVR, Desalination., 304, 11 (2012)
  25. Verissimo S, Peinemann KV, Bordado J, J. Membr. Sci., 264(1-2), 48 (2005)
  26. Korikov AR, Kosaraju R, Sirkar KK, J. Membr. Sci., 279(1-2), 588 (2006)
  27. Kosaraju PB, Sirkar KK, J. Membr. Sci., 321(2), 155 (2008)
  28. Verissimo S, Peinemann KV, Bordado J, Desalination, 184(1-3), 1 (2005)
  29. Yang FJ, Zhang SH, Yang DL, Jian XG, J. Membr. Sci., 301(1-2), 85 (2007)
  30. Liu JQ, Xu ZL, Li XH, Zhang Y, Zhou Y, Wang ZX, Wang XJ, Sep. Purif. Technol., 58(1), 53 (2007)
  31. Yu S, Zheng Y, Zhou Q, Shuai S, Lu Z, Gao C, Desalination., 298, 49 (2012)
  32. Yu S, Chen Z, Cheng Q, Lu Z, Liu M, Gao C, Sep. Purif. Technol., 88, 121 (2012)
  33. Mo J, Hwang JE, Jegal J, Lee KH, Kim J, Membrane Journal., 14, 230 (2004)
  34. Kim IC, Lee KH, Membrane Journal., 15, 34 (2005)
  35. Kim IC, Lee KH, Membrane Journal., 15, 15 (2005)
  36. Abhang RM, Wani KS, Patil VR, Pangarkar BL, Parjane SB, I. J. Res. Environ. Sci. and Tech., 3, 29 (2013)
  37. Frank M, Bargeman G, Zwijnenburg A, Wessling M, Sep. Purif. Technol., 22, 499 (2001)
  38. Shao L, Cheng XQ, Liu Y, Quan S, Ma J, Zhao SZ, Wang KY, J. Membr. Sci., 430, 96 (2013)
  39. Fang W, Shi L, Wang R, J. Membr. Sci., 430, 129 (2013)
  40. Lau WJ, Ismail AF, Desalination, 245(1-3), 321 (2009)
  41. 임대우, 김순식, 김권일, 윤영서, 폴리아미드계 나노복합막의 제조 방법, 대한민국 특허 1019960006279 (1996)
  42. 이규호, 제갈종건, 오남운, 폴리아크릴로니트릴을 이용한 나노복 합막의 제조방법, 대한민국 특허 1020010001398 (2001)
  43. Global Industry Analysts, Inc., Membrane separation technologies (2009)
  44. Hussain AA, Al-Rawajfeh AE, Recent Patant on Chemical Engineering., 2, 51 (2009)
  45. Luo J, Wan Y, J. Membr. Sci., 438, 18 (2013)