화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.30, No.11, 2052-2058, November, 2013
Cometabolic degradation of para-nitrophenol and phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor
E-mail:
Ralstonia eutropha was able to degrade p-nitrophenol (PNP) at concentrations ranging from 5 to 15mg l^(-1) in the presence of phenol which was kept at the constant concentration of 200 mg l^(-1). More than 90% of phenol was degraded within 30 h and in the absence of PNP. While in this time period and in the presence of 15 mg l^(-1) less than 30% of phenol was degraded and PNP removal ability of the test bacterium was about 20%. Kissiris as a natural source of silicon dioxide having a very rigid structure with many micropores irregularly distributed throughout its surface was used to evaluate effectiveness of the cell immobilization using a Kissiris-immobilized cell bioreactor [ICB]. By applying phenol-feeding regime in the ICB operated in a batch recycling mode, simultaneous degradation of phenol in total amount of 1,000 mg l^(-1) with 15 mg l^(-1) PNP was achieved within 40 h.
  1. Qiu X, Zhong Q, Li M, Bai W, Li B, Int. Biodeter. Biodegr., 59, 297 (2007)
  2. Yong YC, Zhong JJ, Process. Biochem., 45, 1937 (2010)
  3. Kim IS, Lee H, Trevors JT, FEMS Microbiol. Lett., 17, 200 (2001)
  4. Schuurmann G, Somashekar RK, Kristen U, J. Environ. Toxicol. Chem., 15, 1702 (1996)
  5. Gemini VL, Gallego A, de Oliveira VM, Gomez CE, Manfio GP, Korol SE, Int. J. Biodeter. Biodegr., 55, 103 (2005)
  6. Zubay G, Biochemistry, 1983, Addison-Wesley Publishing Company, Inc. 4 (1983)
  7. Dixon M, Webb E, Thorne C, Tripton K, 3rd Ed., Enzyme, Academic Press (1979)
  8. Marvinsikkema FD, Debont JA, Appl. Microbiol. Biotechnol., 42(4), 499 (1994)
  9. Kulkarni M, Chaudhari A, J. Environ. Manage., 85, 496 (2007)
  10. Ye J, Singh A, Ward OP, World. J. Microb. Biot., 20, 117 (2004)
  11. Wei Q, Liu H, Zhang JJ, Wang SH, Xiao Y, Zhou NY, Biodegradation., 21, 575 (2010)
  12. Kadiyala V, Spain JC, Appl. Environ. Microbiol., 64, 2479 (1998)
  13. Kitagawa W, Kimura N, Kamagata Y, J. Bacteriol., 186, 4894 (2004)
  14. Spain JC, Gibson DT, J. Appl. Environ. Microbiol., 57, 812 (1991)
  15. Shan X, Junxin L, Lin L, Chuanling Q, J. Environ. Sci., 21, 76 (2009)
  16. Nishino S, Spain J, Environ. Sci. Technol., 27, 489 (1993)
  17. Alvarez-Cohen L, Speitel GE, Biodegradation., 12, 105 (2001)
  18. Meunier CF, Dandoy P, Su BL, J. Colloid Interface Sci., 342(2), 211 (2010)
  19. Kana K, Kanellaki M, Psarianos C, Koutinas A, J. Ferment.Bioeng., 68, 144 (1989)
  20. Nebergall W, Schmidt F, Holtzclaw H, General Chemistry, 5th Ed., D.C. Health Company, Massachusetts (1976)
  21. Lakhwala F, Sofer S, J. Chem. Technol. Biot., 52, 499 (1991)
  22. Salehi Z, Sohrabi M, Vahabzadeh F, Fatemi S, Kawase Y, J. Hazard. Mater., 177(1-3), 582 (2010)
  23. Nickzad A, Mogharei A, Monazzami A, Jamshidian H, Vahabzadeh F, Water Environ. Res., 84, 626 (2012)
  24. Habibi A, Vahabzadeh F, J. Environ. Sci. Heal. A., 48, 279 (2012)
  25. Sedighi M, Karimi A, Vahabzadeh F, J. Hazard. Mater., 169(1-3), 88 (2009)
  26. Box JD, J. Wat. Res., 17, 511 (1983)
  27. Chandekar CJ, Ingle AO, J. Ind. Poll. Cont., 6, 11 (1990)
  28. Cho YG, Yoon JH, Park YH, Lee ST, J. Gen. Appl.Microbiol., 44, 303 (1998)
  29. Cho YG, Rhee SK, Lee ST, Biodegradation., 11, 21 (2000)
  30. Hill GA, Milne BJ, Nawrocki PA, Appl. Microbiol. Biotechnol., 46(2), 163 (1996)
  31. Hofrichter M, Gunther T, Fritsche W, Biodegradation., 3, 415 (1993)
  32. Loh KC, Wu T, Can. J. Chem. Eng., 84 (2006)
  33. Johnson BF, Stanier RY, J. Bacteriol., 107, 468 (1971)
  34. Stoilova I, Krastanov A, Stanchev V, Daniel D, Gerginova M, Alexieva Z, Enzyme Microb. Technol., 39(5), 1036 (2006)
  35. Leonard D, Ben Youssef C, Destruhaut C, Lindley ND, Queinnec I, Biotechnol. Bioeng., 65(4), 407 (1999)
  36. Doran P, Bioprocess engineering principles, Academic Press (1995)
  37. Erhan E, Yer E, Akay G, Keskinler B, Keskinler D, J. Chem. Technol. Biotechnol., 79(2), 195 (2004)