Korean Journal of Chemical Engineering, Vol.30, No.11, 2052-2058, November, 2013
Cometabolic degradation of para-nitrophenol and phenol by Ralstonia eutropha in a Kissiris-immobilized cell bioreactor
E-mail:
Ralstonia eutropha was able to degrade p-nitrophenol (PNP) at concentrations ranging from 5 to 15mg l^(-1) in the presence of phenol which was kept at the constant concentration of 200 mg l^(-1). More than 90% of phenol was degraded within 30 h and in the absence of PNP. While in this time period and in the presence of 15 mg l^(-1) less than 30% of phenol was degraded and PNP removal ability of the test bacterium was about 20%. Kissiris as a natural source of silicon dioxide having a very rigid structure with many micropores irregularly distributed throughout its surface was used to evaluate effectiveness of the cell immobilization using a Kissiris-immobilized cell bioreactor [ICB]. By applying phenol-feeding regime in the ICB operated in a batch recycling mode, simultaneous degradation of phenol in total amount of 1,000 mg l^(-1) with 15 mg l^(-1) PNP was achieved within 40 h.
Keywords:Cometabolic Degradation;Kissiris-immobilized Cell Bioreactor [ICB];p-Nitrophenol (PNP);Phenol;Ralstonia eutropha
- Qiu X, Zhong Q, Li M, Bai W, Li B, Int. Biodeter. Biodegr., 59, 297 (2007)
- Yong YC, Zhong JJ, Process. Biochem., 45, 1937 (2010)
- Kim IS, Lee H, Trevors JT, FEMS Microbiol. Lett., 17, 200 (2001)
- Schuurmann G, Somashekar RK, Kristen U, J. Environ. Toxicol. Chem., 15, 1702 (1996)
- Gemini VL, Gallego A, de Oliveira VM, Gomez CE, Manfio GP, Korol SE, Int. J. Biodeter. Biodegr., 55, 103 (2005)
- Zubay G, Biochemistry, 1983, Addison-Wesley Publishing Company, Inc. 4 (1983)
- Dixon M, Webb E, Thorne C, Tripton K, 3rd Ed., Enzyme, Academic Press (1979)
- Marvinsikkema FD, Debont JA, Appl. Microbiol. Biotechnol., 42(4), 499 (1994)
- Kulkarni M, Chaudhari A, J. Environ. Manage., 85, 496 (2007)
- Ye J, Singh A, Ward OP, World. J. Microb. Biot., 20, 117 (2004)
- Wei Q, Liu H, Zhang JJ, Wang SH, Xiao Y, Zhou NY, Biodegradation., 21, 575 (2010)
- Kadiyala V, Spain JC, Appl. Environ. Microbiol., 64, 2479 (1998)
- Kitagawa W, Kimura N, Kamagata Y, J. Bacteriol., 186, 4894 (2004)
- Spain JC, Gibson DT, J. Appl. Environ. Microbiol., 57, 812 (1991)
- Shan X, Junxin L, Lin L, Chuanling Q, J. Environ. Sci., 21, 76 (2009)
- Nishino S, Spain J, Environ. Sci. Technol., 27, 489 (1993)
- Alvarez-Cohen L, Speitel GE, Biodegradation., 12, 105 (2001)
- Meunier CF, Dandoy P, Su BL, J. Colloid Interface Sci., 342(2), 211 (2010)
- Kana K, Kanellaki M, Psarianos C, Koutinas A, J. Ferment.Bioeng., 68, 144 (1989)
- Nebergall W, Schmidt F, Holtzclaw H, General Chemistry, 5th Ed., D.C. Health Company, Massachusetts (1976)
- Lakhwala F, Sofer S, J. Chem. Technol. Biot., 52, 499 (1991)
- Salehi Z, Sohrabi M, Vahabzadeh F, Fatemi S, Kawase Y, J. Hazard. Mater., 177(1-3), 582 (2010)
- Nickzad A, Mogharei A, Monazzami A, Jamshidian H, Vahabzadeh F, Water Environ. Res., 84, 626 (2012)
- Habibi A, Vahabzadeh F, J. Environ. Sci. Heal. A., 48, 279 (2012)
- Sedighi M, Karimi A, Vahabzadeh F, J. Hazard. Mater., 169(1-3), 88 (2009)
- Box JD, J. Wat. Res., 17, 511 (1983)
- Chandekar CJ, Ingle AO, J. Ind. Poll. Cont., 6, 11 (1990)
- Cho YG, Yoon JH, Park YH, Lee ST, J. Gen. Appl.Microbiol., 44, 303 (1998)
- Cho YG, Rhee SK, Lee ST, Biodegradation., 11, 21 (2000)
- Hill GA, Milne BJ, Nawrocki PA, Appl. Microbiol. Biotechnol., 46(2), 163 (1996)
- Hofrichter M, Gunther T, Fritsche W, Biodegradation., 3, 415 (1993)
- Loh KC, Wu T, Can. J. Chem. Eng., 84 (2006)
- Johnson BF, Stanier RY, J. Bacteriol., 107, 468 (1971)
- Stoilova I, Krastanov A, Stanchev V, Daniel D, Gerginova M, Alexieva Z, Enzyme Microb. Technol., 39(5), 1036 (2006)
- Leonard D, Ben Youssef C, Destruhaut C, Lindley ND, Queinnec I, Biotechnol. Bioeng., 65(4), 407 (1999)
- Doran P, Bioprocess engineering principles, Academic Press (1995)
- Erhan E, Yer E, Akay G, Keskinler B, Keskinler D, J. Chem. Technol. Biotechnol., 79(2), 195 (2004)