화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.19, No.6, 2052-2059, November, 2013
Synthesis and characterization of mesoporous anatase TiO2 nanostructures via organic acid precursor process for dye-sensitized solar cells applications
E-mail:
Titania (TiO2) nanoparticles have been synthesized using organic precursor technique. The titania nanoparticles were characterized. The results indicated that the prepared titanium oxalate and citrate precursors were transformed to anatase TiO2 phase at temperature 400 ℃ for 2 h. Dye-sensitized solar cells were assembled using the prepared nanocrystalline TiO2 with large surface area. The specific surface area SBET was 80.9 and 78.6 m2/g using oxalic and citric acids, respectively. The power efficiency was 3.5 and 2.4%. A brief discussion on the possible reasons behind the low power conversion efficiency observed for these type of solar cells was reported.
  1. Gra¨ tzel M, Journal of Photochemistry and Photobiology C: Chemistry., 4, 145 (2003)
  2. Gra¨ tzel M, Journal of Photochemistry and Photobiology A: Chemistry., 164, 3 (2004)
  3. O’Regant B, Gra¨ tzel M, Nature., 353, 737 (1991)
  4. Yamaguchi T, Tobe N, Matsumoto D, Nagai T, Arakawa H, Sol. Energy Mater. Sol. Cells, 94(5), 812 (2010)
  5. Gonzalez-Valls I, Lira-Cantu M, Energy & Environmental Science., 3, 789 (2010)
  6. Lee WJ, Ramasamy E, Lee DY, Sol. Energy Mater. Sol. Cells, 93(8), 1448 (2009)
  7. Kosowska B, Mozia S, Morawski AW, Grzmil B, Janus M, Kalucki K, Sol. Energy Mater. Sol. Cells, 88(3), 269 (2005)
  8. Devipriya S, Yesodharan S, Sol. Energy Mater. Sol. Cells, 86(3), 309 (2005)
  9. Rashad MM, Shalan AE, International Journal of Nanoparticles., 5, 159 (169)
  10. Wang JP, Bai Y, Wu MY, Yin J, Zhang WF, J. Power Sources, 191(2), 614 (2009)
  11. Ruiz AM, Sakai G, Cornet A, Shimanoe K, Morante JR, Yamazoe N, Sensors and Actuators B: Chemical., 103, 312 (2004)
  12. Trung T, Cho WJ, Ha CS, Materials Letters., 57, 2746 (2003)
  13. Sugimoto T, Zhou XP, Muramatsu A, J. Colloid Interface Sci., 252(2), 339 (2002)
  14. Hafez H, Wu J, Lan Z, Li Q, Xie G, Lin J, Huang M, Huang Y, Abdel-Mottaleb MSA, Nanotechnology., 21, 415201 (2010)
  15. Arnal P, Corriu RJP, Leclercq D, Mutin PH, Vioux A, Chemistry of Materials., 9, 694 (1997)
  16. Kim CS, Moon BK, Park JH, Chung ST, Son SM, J. Cryst. Growth, 254(3-4), 405 (2003)
  17. Kim CS, Moon BK, Park JH, Choi BC, Seo HJ, J. Cryst. Growth, 257(3-4), 309 (2003)
  18. Nian JN, Teng HS, J. Phys. Chem. B, 110(9), 4193 (2006)
  19. Rashad MM, Shalan AE, Lira-Cantu´ M, Abdel-Mottaleb MSA, Applied Nanoscience., 3, 167 (2013)
  20. Kim DH, Hong HS, Kim SJ, Song JS, Lee KS, Journal of Alloys and Compounds., 375, 259 (2004)
  21. Xiaoyan P, Xueming M, Materials Letters., 58, 513 (2004)
  22. Polo AS, Santos MC, de Souza RFB, Alves WA, J. Power Sources, 196(2), 872 (2011)
  23. Kamei M, Mitsuhashi T, Surface Science., 463, L609 (2000)
  24. Bischoff BL, Anderson MA, Chemistry of Materials., 7, 1772 (1995)
  25. Mahshid S, Askari M, Sasani GM, Journal of Materials Processing Technology., 189, 296 (2007)
  26. Mohamed RM, Rashad MM, Haraz FA, Sigmund W, Journal of Magnetism and Magnetic Materials., 322, 2058 (2010)
  27. Rashad MM, Mohamed RM, El-Shall H, Journal of Materials Processing Technology., 198, 139 (2008)
  28. Sahin C, Dittrich T, Varlikli C, Icli S, Lux-Steiner MC, Sol. Energy Mater. Sol. Cells, 94(4), 686 (2010)
  29. Shalan AE, Rashad MM, Yu Y, Lira-Cantu´ M, Abdel-Mottaleb MSA, Applied Physics A., 110, 111 (2013)
  30. Nguyen TV, Lee HC, Yang OB, Sol. Energy Mater. Sol. Cells, 90(7-8), 967 (2006)
  31. Nair RG, Paul S, Samdarshi SK, Sol. Energy Mater. Sol. Cells, 95(7), 1901 (2011)
  32. Verma A, Samanta SB, Bakhshi AK, Agnihotry SA, Sol. Energy Mater. Sol. Cells, 88(1), 47 (2005)
  33. Kim DH, Lee S, Park JH, Noh JH, Park IJ, Seong WM, Hong KS, Sol. Energy Mater. Sol. Cells, 96(1), 276 (2012)
  34. Hafez H, Saif M, Abdel-Mottaleb MSA, J. Power Sources, 196(13), 5792 (2011)
  35. Lira-Cantu M, Chafiq A, Faissat J, Gonzalez-Valls I, Yu YH, Sol. Energy Mater. Sol. Cells, 95(5), 1362 (2011)
  36. Shalan AE, Rashad MM, Yu Y, Lira-Cantu M, Abdel-Mottaleb MSA, Electrochimica Acta., 89, 469 (2013)
  37. Jiangbin X, Shozo Y, Solar Energy., 85, 3143 (2011)
  38. Kolen'ko YV, Churagulov BR, Kunst M, Mazerolles L, Colbeau-Justin C, Appl. Catal. B: Environ., 54(1), 51 (2004)
  39. Syrrokostas G, Siokou A, Leftheriotis G, Yianoulis P, Solar Energy Materials & Solar Cells., 103, 119 (2012)
  40. Lira-Cantu M, Siddiki MK, Munoz-Rojas D, Amade R, Gonzalez-Pech NI, Sol. Energy Mater. Sol. Cells, 94(7), 1227 (2010)
  41. Du Pasquier A, Stewart M, Spitler T, Coleman M, Sol. Energy Mater. Sol. Cells, 93(4), 528 (2009)
  42. Grinis L, Dor S, Ofir A, Zaban A, Journal of Photochemistry and Photobiology A: Chemistry., 198, 52 (2008)
  43. Han LY, Koide N, Chiba Y, Topics in Applied Physics., 84, 2433 (2004)
  44. Hauch A, Georg A, Electrochim. Acta, 46(22), 3457 (2001)
  45. Qi L, Ma Y, Ouyang Q, Zhang Y, Li L, Chen Y, Journal of Nanoparticle Research., doi:10.1007/s11051-012-0907-4., 14, 907 (2012)