화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.6, 722-729, November, 2013
보론 나이트라이드와 탄소나노튜브로 충전된 실리콘 고무의 열전도도 향상
Improvement of Thermal Conductivity of Poly(dimethyl siloxane) Composites Filled with Boron Nitride and Carbon Nanotubes
E-mail:
초록
Poly(dimethyl siloxane)(PDMS, 실리콘 고무)의 열전도도 향상을 위하여 보론 나이트라이드과 탄소나노튜브를 열전도성 충전제로 사용하였다. 보론 나이트라이드의 함량은 0에서 100 phr로 증가시켰으며, 탄소나노튜브의 함량은 보론 나이트라이드의 함량을 100 phr로 고정시킨 상태에서 0에서 4 phr로 증가시켰다. 실리콘 고무 복합재료의 열전도도는 보론 나이트라이드 함량의 증가에 따라 증가하였으나, 탄소나노튜브를 추가로 첨가하더라도 열전도도 향상에 대한 효과는 미미하였다. 100 phr 함량의 보론 나이트라이드 함량에 탄소나노튜브를 충전 시 복합재료의 열분해가 가속화되는 예상치 못한 결과를 얻었다. 이를 해석하기 위하여 Horowitz-Metzger 방법을 이용하여 열분해 활성화 에너지를 계산하였다. 또한 보론 나이트라이드/탄소나노튜브가 충전된 실리콘 고무 복합재료의 경화거동, 전기저항 및 기계적 물성을 연구하였다.
In order to enhance the thermal conductivity of poly(dimethyl siloxane) (PDMS), boron nitride (BN) and carbon nanotubes (CNTs) were incorporated as the thermally conductive fillers. The amount of BN was increased from 0 to 100 phr (parts per hundred rubber) and the amount of CNTs was increased from 0 to 4 phr at a fixed amount of the boron nitride (100 phr). The thermal conductivity of the composites increased with an increasing concentration of BN, but the incorporation of CNTs had only a slight effect on the enhancement of thermal conductivity. Unexpectedly, the thermal degradation of the composites was accelerated by the addition of CNTs in 100 phr BN filled PDMS. Activation energy for thermal decomposition of the composites was calculated using the Horowitz-Metzger method. The curing behavior, electrical resistivity, and mechanical properties of PDMS filled with BN and CNTs were investigated.
  1. Viswanath R, Wakharkar V, Watwe A, Lebonheur V, Intel Technol. J., Q3, 1 (2000)
  2. Chung DDL, Appl. Therm. Eng., 21, 1593 (2001)
  3. Oh WC, Ko WB, Zhang FJ, Elastom. Compos., 45, 80 (2010)
  4. Park EJ, Lee J, Jung D, Shim SE, Elastom. Compos., 45, 17 (2010)
  5. Jang WK, Yun J, Kim HI, Lee YS, Carbon Lett., 12, 162 (2011)
  6. Kim MT, Rhee KY, Carbon Lett., 12, 177 (2011)
  7. Kim SH, Choi SR, Kim D, J. Heat Trans-T ASME., 129, 298 (2007)
  8. Zhou WY, Qi SH, Tu CC, Zhao HZ, Wang CF, Kou JL, J. Appl. Polym. Sci., 104(2), 1312 (2007)
  9. Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ, Thermochim. Acta, 430(1-2), 155 (2005)
  10. Zhou WY, Qi SH, An QL, Zhao HZ, Liu NL, Mater. Res. Bull., 42(10), 1863 (2007)
  11. Yu W, Xie HQ, Chen LF, Li Y, Thermochim. Acta, 491(1-2), 92 (2009)
  12. Kuchibhatla SVNT, Karakoti AS, Bera D, Seal S, Prog. Mater. Sci., 52(5), 699 (2007)
  13. Parekh BB, Fanchini G, Eda G, Chhowalla M, Appl. Phys.Lett., 121913/1, 90 (2007)
  14. Bonnet P, Sireude D, Garnier B, Chauvet O, Appl. Phys.Lett., 201910/1, 91 (2007)
  15. Lu CS, Mai YW, J. Mater. Sci., 43(17), 6012 (2008)
  16. Xu Y, Leong CK, Chung DDL, J. Electro. Mater., 36, 1181 (2007)
  17. Bryning MB, Milkie DE, Islam MF, Kikkawa M, Yodh AG, Appl. Phys. Lett., 161909/1, 87 (2005)
  18. Huang H, Liu CH, Wu Y, Fan SS, Adv. Mater., 17(13), 1652 (2005)
  19. Song PC, Liu CH, Fan SS, Appl. Phys. Lett., 153111/1, 88 (2006)
  20. Hong WT, Tai NH, Diam. Relat. Mater., 17, 1577 (2008)
  21. Liu CH, Fan SS, Appl. Phys. Lett., 123106/1, 86 (2005)
  22. Hong J, Lee J, Hong CK, Shim SE, Curr. Appl. Phys., 10(1), 359 (2010)
  23. Prasher R, Proc. IEEE., 94, 1571 (2006)
  24. Zhou WY, Qi SH, Zhao HZ, Liu NL, Polym.Compos., 28, 123 (2007)
  25. Hong J, Lee J, Hong CK, Shim SE, J. Therm. Anal.Calorim., 101, 297 (2010)
  26. Yang SY, Ma CCM, Teng CC, Huang YW, Liao SH, Huang YL, Tien HW, Lee TM, Chiou KC, Carbon., 48, 592 (2010)
  27. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H, Polymer, 45(3), 739 (2004)
  28. Fischer JE, Dai H, Thess A, Lee R, Hanjani NN, Dehaas DL, Smalley RE, Phys. Rev. B., 55, R4921 (1997)
  29. Horowitz HH, Metzger G, Anal. Chem., 35, 1464 (1963)
  30. Popovic IG, Katsikas L, Mater. Technol., 40, 7 (2006)