화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.25, No.4, 217-225, November, 2013
Impedance boundary condition analysis of aging-induced wave reflections in blood flow
E-mail:
Modeling circulatory system can help the diagnosis of vessels and predict future risk of diseases. However, the complicated geometry, elasticity of blood vessel, and pulsatile flow of blood put the accurate circulatory system modeling in a challenging task. Various modeling methods are developed to improve its accuracy. LBM solver can easily convert medical image data into lattice grid coordinates. Non-Newtonian model considers viscoelasticity of blood. Also, wall boundary treatment using ghost nodes improves the accuracy of fluid modeling. Finally, impedance boundary condition can successfully develop the effect of wave reflection at the outlet of computational domain. These efficient modeling techniques are not yet well combined each other. The purpose of this paper is to apply these methods in the circulatory system modeling to observe the relationship between vessel elasticity and blood flow wave reflection. Flow rate differences and shear stresses are analyzed by reflecting various vessel ages.
  1. Agabiti-Rosei E, Mancia G, O'Rourke MF, Roman MJ, Safar ME, Smulyan H, Wang JG, Wilkinson IB, Williams B, Vlachopoulos C, Hypertension., 50, 154 (2007)
  2. Atabek H, Biophysical journal., 8, 626 (1968)
  3. Cheema TA, Park CW, Korea-Aust. Rheol. J., 25(3), 121 (2013)
  4. Chen J, Lu XY, Journal of biomechanics., 37, 1899 (2004)
  5. Cho SW, Kim SW, Sung MH, Ro KC, Ryou HS, Korea-Australia Rheology Journal., 23, 7 (2011)
  6. Darne B, Girerd X, Safar M, Cambien F, Guize L, Hypertension., 13, 392 (1989)
  7. Fang H, Wang Z, Lin Z, Liu M, Physical Review E., 65, 051925 (2002)
  8. Fisher C, Rossmann JS, Journal of biomechanical engineering., 131, 191004 (2009)
  9. Gijsen F, Van de Vosse F, Janssen J, Journal of biomechanics., 32, 601 (1999)
  10. Inamuro T, Yoshino M, Ogino F, Physics of Fluids., 7, 2928 (1995)
  11. Itu L, Suciu C, Postelnicu A, Moldoveanu F, E-Health and Bioengineering Conference (EHB)., 2011, IEEE, 1 (2011)
  12. Johnston BM, Johnston PR, Corney S, Kilpatrick D, Journal of biomechanics., 37, 709 (2004)
  13. Kim YH, Xu X, Lee JS, Annals of biomedical engineering., 38, 2274 (2010)
  14. Olufsen MS, American journal of physiology-Heart and circulatory physiology., 276, H257 (1999)
  15. Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J, Annals of biomedical engineering., 28, 1281 (2000)
  16. Pedley TJ, The Fluid Mechanics of Large Blood Vessels, Cambridge, UK: Cambridge Univ. (1980)
  17. Pralhad RN, Schultz DH, Mathematical biosciences., 190, 203 (2004)
  18. Rohde M, Kandhai D, Derksen J, Van den Akker H, Physical Review E., 67, 066703 (2003)
  19. Salvi P, Bellasi A, Di Iorio B, Blood purification., 36, 21 (2013)
  20. Sen S, Chakravarty S, Korea-Australia Rheology Journal., 24, 287 (2013)
  21. Seo T, Korea-Aust. Rheol. J., 25(3), 153 (2013)
  22. Shojima M, Oshima M, Takagi K, Torii R, Hayakawa M, Katada K, Morita A, Kirino T, Stroke;a journal of cerebral circulation., 35, 2500 (2004)
  23. Vignon-Clementel IE, Alberto Figueroa C, Jansen KE, Taylor CA, Computer Methods in Applied Mechanics and Engineering., 195, 3776 (2006)
  24. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA, Computer methods in biomechanics and biomedical engineering., 13, 625 (2010)
  25. Weber T, Auer J, O'Rourke MF, Kvas E, Lassnig E, Berent R, Eber B, Circulation., 109, 184 (2004)
  26. Womersley JR, An Elastic Tube Theory of Pulse Transmission and Oscillatory Flow in Mammalian Arteries, Technical Report TR 56-614, Wright Air Development Center, Dayton, Ohio. (1957)