Korean Chemical Engineering Research, Vol.51, No.6, 755-759, December, 2013
Bosch 공정에서 Si 식각속도와 식각프로파일에 대한 Ar 첨가의 영향
Effects of Ar Addition on the Etch Rates and Etch Profiles of Si Substrates During the Bosch Process
E-mail:
초록
Bosch 공정의 식각 단계에서 Ar을 첨가하였을 때 Si의 식각특성을 관찰하기 위하여 식각 단계에서 SF6 플라즈마만 사용한 경우와 Ar 유속비율이 20%인 SF6/Ar 플라즈마를 각각 사용하여 Si을 Bosch 공정으로 식각하였다. Bosch 공정의 식각 단계에서 SF6 플라즈마에 Ar 가스를 첨가하면 Ar+ 이온에 의한 이온포격이 증가하였고 이는 Si 입자의 스퍼터링을 초래할 뿐 아니라 F 라디칼과 Si의 화학반응을 가속하였다. 그 결과 식각 단계에서 20%의 Ar이 첨가되어 Bosch 공정으로 수행된 Si의 식각속도는 Ar이 첨가되지 않은 경우보다 10% 이상 빨라졌고 식각프로파일도 더욱 비등방적이었다. 이 연구의 결과는 Bosch 공정으로 Si을 식각할 때 식각속도와 식각프로파일의 비등방성을 개선하는데 필요한 기초자료로 사용될 수 있을 것으로 판단된다.
The etch rate and etch profile of Si was investigated when Ar was added to an SF6 plasma in the etch step of the Bosch process. A Si substrate was etched with the Bosch process using SF6 and SF6/Ar plasmas, respectively, in the etch step to analyze the effects of Ar addition on the etch characteristics of Si. When the Ar flow rate in the SF6 plasma was increased, the etch rate of the Si substrate increased, had a maximum at 20% of the Ar flow rate, and then decreased. This was because the addition of Ar to the SF6 plasma in the etch step of the Bosch process resulted in the bombardment of Ar ions on the Si substrate. This enhanced the chemical reactions (thus etch rates) between F radicals and Si as well as led to sputtering of Si particles. Consequently, the etch rate was higher more than 10% and the etch profile was more anisotropic when the Si substrate was etched with the Bosch process using a SF6/Ar (20% of Ar flow rate) plasma during the etch step. This work revealed a feasibility to improve the etch rate and anisotropic etch profile of Si performed with the Bosch process.
- Yun HJ, Kim TH, Shin CB, Kim CK, Min JH, Moon SH, Korean J. Chem. Eng., 24(4), 670 (2007)
- Aachboun S, Ranson P, J. Vac. Sci. Technol. A, 17(4), 2270 (1999)
- Lee WG, Korean Chem. Eng. Res., 47(1), 79 (2009)
- Kang SK, Min JH, Lee JK, Moon SH, Korean Chem. Eng. Res., 44(5), 498 (2006)
- Laermer F, Schilp A, U.S. Patent No. 5,501,893 (1996)
- Tachi S, Tsujimoto K, Sadayuki O, Appl.Phys. Lett., 52, 616 (1988)
- Volland B, Hudek FS, Heerlein H, Rangelow IW, J. Vac. Sci. Technol. B, 17(6), 2768 (1999)
- Rangelow IW, J. Vac. Sci. Technol. A, 21(4), 1550 (2003)
- Blaw MA, Zijlstra T, van der Drift E, J. Vac. Sci. Technol. B, 19(6), 2930 (2001)
- Blauw MA, Craciun G, Sloof WG, French PJ, van der Drift E, J. Vac. Sci. Technol. B, 20(6), 3106 (2002)
- Abdolvand R, Ayazi F, Senss. Actuator A-Phys., 144, 109 (2008)
- Rhee H, Kwon H, Kim CK, Kim H, Yoo J, Kim YW, J. Vac. Sci. Technol. B, 26(2), 576 (2008)
- Rhee H, Lee HM, Namkoung YM, Kim CK, Chae H, Kim YW, J. Vac. Sci. Technol. B, 27(1), 33 (2009)
- Hedlund C, Jonsson LB, Katardjiev IV, Berg S, Blom HO, J. Vac. Sci. Technol. A, 15(3), 686 (1997)
- Min JH, Lee GR, Lee JK, Moon SH, Kim CK, J. Vac. Sci. Technol. B, 22(3), 893 (2004)