화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.51, No.6, 780-783, December, 2013
이온화 방사선 조사에 의해 얻어진 저분자 laminarin의 분자구조 특성
Structural Characteristics of Low Molecular Weight Laminarin Prepared by Ionizing Irradiation
E-mail:
초록
저분자량의 laminarin은 항산화능과 같은 생물학적 물성이 고분자량의 laminarin과 비교하여 증가하였다는 최근의 연구 결과들이 보고되었다. 이러한 저분자화에 따른 laminarin 생물활성의 증가 원인을 밝히고자 본 논문에서는 이온화 방사선 조사를 통하여 얻어진 저분자량 laminarin의 분자구조에 관한 연구를 수행하였다. 15 kDa 크기의 분자량을 갖는 laminarin을 이온화 방사선 조사를 이용하여 13.5, 8.5, 7, 6 kDa 크기의 저분자량 laminarin 시료들을 얻었다. 얻어진 저분자량 laminarin은 고분자량 laminarin에 비하여 낮은 polydispersity 값을 가졌다. 방사선 조사에 의한 저분자화에 따른 laminarin 기능기들의 변화를 확인하기 위하여 Fourier-transform infrared 분석을 수행한 결과, 분자량 감소에 따라서 대부분의 기능기들의 변화는 관찰되지 않았지만, carbonyl group의 증가가 확인되었다. Laminarin 입자의 scanning electron microscopy 분석으로부터 저분자량 laminarin에서 glycosidic 결합의 분해에 의한 입자 균열이 확인되었다. 이러한 결과들은 laminarin과 같은 다당류의 저분자화에 따른 기능성 변화 연구에 활용될 수 있을 것으로 기대된다.
Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, molecular structure of low molecular weight laminarin prepared by ionizing irradiation was studied. Low molecular weight laminarin samples of 13.5, 8.5, 7, and 6 kDa were obtained from 15 kDa laminarin by irradiation. From gel permeation chromatography data, low molecular weight laminarin was shown to have low polydispersity. To define the changes of functional groups in laminarin with different molecular weights, Fourier-transform infrared analysis was carried out. There was found no significant changes of functional groups in low molecular weight laminarin, except the increase of carbonyl group. The granular fissures from scanning electron microscopy showed the breakage of glycosidic bond in low molecular weight laminarin. These results could be utilized for the investigation of the enhanced biological activities of low molecular weight polysaccharides including laminarin.
  1. Srinvastava R, Kulshrestha DK, Phytochemistry., 28, 2877 (1989)
  2. Park HK, Kim IH, Kim J, Nam TJ, International Journal of Molecular Medicine., 30, 734 (2012)
  3. Choi J, Kim HJ, Kim JH, Lee JW, Journal of Food Biochemistry., 36, 465 (2012)
  4. Qi H, Zhao T, Zhang Q, Li Z, Zhao Z, Xing R, J. Appl. Phycol., 17, 527 (2005)
  5. Kim KH, Kim YW, Kim HB, Lee BJ, Lee DS, Biotechnol. Lett., 28(6), 439 (2006)
  6. Miyanishi N, Iwamoto Y, Watanabe E, Oda T, J. Biosci. Bioeng., 95(2), 192 (2003)
  7. Byun EH, Kim JH, Sung NY, Choi JI, Lim ST, Kim KH, Yook HS, Byun MW, Lee JW, Radiat. Phys. Chem., 77, 781 (2008)
  8. Yoshiga A, Otaguro H, Parra DF, Lima LFCP, Lugao AB, Polym. Bull., 63(3), 397 (2009)
  9. Choi JI, Lee HS, Kim JH, Lee KW, Lee JW, Seo SJ, Kang KW, Byun MW, Polym. Degrad.Stabil., 93, 310 (2008)
  10. Choi J, Kim HJ, Kim JH, Byun MW, Chun BS, Ahn DH, Hwang YJ, Kim DJ, Kim GH, Lee JW, Appl. Radiat. Isot., 67, 1277 (2009)
  11. Choi JI, Kim JH, Lee KW, Song BS, Yoon Y, Byun MW, Lee JW, Korean J. Chem. Eng., 26(6), 1825 (2009)
  12. Pang Z, Otaka K, Maoka T, Hidaka K, Ishijima S, Oda M, Ohnishi M, Biosci. Biotechnol. Biochem., 69, 553 (2005)
  13. Choi J, Kim HJ, Lee JW, Food Chem., 129, 520 (2011)
  14. Mathlouthi M, Koenig JL, Adv. Carbohydr. Chem. Biochem., 44, 7 (1986)
  15. Huang L, Zhai M, Peng J, Li J, Wei G, Carbohydr. Polym., 67, 305 (2007)
  16. Sokhey AS, Chinnaswamy R, Cereal Chem., 70, 260 (1993)