화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.24, No.6, 663-667, December, 2013
Aerobic Benzyl Alcohol Oxidation 반응용 Ag/TiO2 제조
Preparation of Ag/TiO2 Particle for Aerobic Benzyl Alcohol Oxidation
E-mail:
초록
다양한 이온성 액체를 사용하여 은이 담지된 이산화티타늄 입자를 제조하였다. 합성에 사용된 이온성 액체의 종류에 따라 입자의 물성이 변하는 것을 관찰하였다. 이는 이온성 액체의 특성이 은 입자들의 결합에 영향을 주기 때문이다. 제조된 입자의 촉매 성능을 측정하기 위하여 산소분위기에서 벤질알코올의 산화반응을 실시하였다. 그 결과 1-octyl-3-methylimidazolium tetrafluoroborate를 이용하여 합성한 Ag/TiO2 입자가 가장 우수한 촉매 활성을 나타내었다.
Ag/TiO2 particle was prepared using various ionic liquids by wet impregnation. The properties of the particles were significantly affected by the composition of ionic liquids. This is mainly attributed to different abilities of an ionic liquid to coordinate with the silver particle, leading to various coagulation of silver particles. The catalytic activity of the prepared samples was examined for the aerobic benzyl alcohol oxidation. Among the particles, Ag/TiO2 prepared with 1-octyl-3-methylimidazolium tetrafluoroborate showed the best catalytic performance.
  1. Sheldon RA, Arends IWCE, Dijksman A, Catal. Today, 57(1-2), 157 (2000)
  2. Sheldon RA, Arends IWCE, Brink GJT, Dijksman A, Acc. Chem.Res., 35, 774 (2002)
  3. Sheldon RA, Kochi JK, Metal-Catalyzed Oxidation of Organic Compounds, Academic Press, New York (1981)
  4. Stevens RV, Chapman KT, Weller HN, J. Org. Chem., 45, 2030 (1980)
  5. Holum JR, J. Org. Chem., 26, 4814 (1961)
  6. Lee DG, Spitzer UA, J. Org. Chem., 35, 3589 (1970)
  7. Highet RJ, Wildman WC, J. Am. Chem. Soc., 77, 4399 (1955)
  8. Menger FM, Lee C, Tetrahedron Lett., 22, 1655 (1981)
  9. Yamaguchi K, Mori K, Mizugaki T, Ebitani K, Kaneda K, J. Am. Chem. Soc., 122(29), 7144 (2000)
  10. Nishimura T, Onoue T, Ohe K, Uemura S, J. Org. Chem., 64, 6750 (1999)
  11. Hasan M, Musawir M, Davey PN, Kozhevnikov IV, J. Mol. Catal. A-Chem., 180(1-2), 77 (2002)
  12. Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K, J. Am. Chem. Soc., 126(34), 10657 (2004)
  13. Abad A, Concepcion P, Corma A, Garcia H, Angew. Chem. Int. Ed., 44, 4066 (2005)
  14. Liu W, Flytzanistephanopoulos M, J. Catal., 153(2), 304 (1995)
  15. Arcadi A, Giuseppe SD, Curr. Org. Chem., 8, 795 (2004)
  16. Tian ZQ, Ren B, Wu DY, J. Phys. Chem. B, 106(37), 9463 (2002)
  17. Vonmatt P, Pfaltz A, Angew. Chem. Int. Ed., 32, 566 (1993)
  18. Astruc D, Lu F, Aranzaes JR, Angew. Chem. Int. Ed., 44, 7852 (2005)
  19. Yoon M, Kim Y, Kim YM, Volkov V, Song HJ, Park YJ, Park IW, Mater. Chem. Phys., 91(1), 104 (2005)
  20. Mallick K, Witcom MJ, Scurrell MS, Mater. Sci. Eng. C., 26, 87 (2006)
  21. He ST, Yao JN, Jiang P, Shi DX, Zhang HX, Xie SS, Pang SJ, Gao HJ, Langmuir, 17(5), 1571 (2001)
  22. Manna A, Imae T, Iida M, Hisamatsu N, Langmuir, 17(19), 6000 (2001)
  23. Sun Y, Xia Y, Science., 298, 2176 (2002)
  24. Hao EC, Kelly KL, Hupp JT, Schatz GC, J. Am. Chem. Soc., 124(51), 15182 (2002)
  25. Maillard M, Giorgio S, Pileni MP, J. Phys. Chem. B, 107(11), 2466 (2003)
  26. Wasserscheid P, Keim K, Angew. Chem. Int. Ed., 39, 3773 (2000)
  27. Welton T, Chem. Rev., 99(8), 2071 (1999)
  28. Yoo KS, Appl. Chem. Eng., 23(1), 14 (2012)