- Previous Article
- Next Article
- Table of Contents
Automatica, Vol.49, No.10, 2939-2952, 2013
Discrete-time stochastic control systems: A continuous Lyapunov function implies robustness to strictly causal perturbations
Discrete-time stochastic systems employing possibly discontinuous state-feedback control laws are addressed. Allowing discontinuous feedbacks is fundamental for stochastic systems regulated, for instance, by optimization-based control laws. We introduce generalized random solutions for discontinuous stochastic systems to guarantee the existence of solutions and to generate enough solutions to get an accurate picture of robustness with respect to strictly causal perturbations. Under basic regularity conditions, the existence of a continuous stochastic Lyapunov function is sufficient to establish that asymptotic stability in probability for the closed-loop system is robust to sufficiently small, state-dependent, strictly causal, worst-case perturbations. Robustness of a weaker stochastic stability property called recurrence is also shown in a global sense in the case of state-dependent perturbations, and in a semiglobal practical sense in the case of persistent perturbations. An example shows that a continuous stochastic Lyapunov function is not sufficient for robustness to arbitrarily small worst-case disturbances that are not strictly causal. Our positive results are also illustrated by examples. (C) 2013 Elsevier Ltd. All rights reserved.