화학공학소재연구정보센터
Automatica, Vol.49, No.11, 3167-3179, 2013
A parameterized liveness and ratio-enforcing supervisor for a class of generalized Petri nets
The work proposes a synthesis method of supervisors for flexible manufacturing systems modeled by a class of generalized Petri nets. A concept of resource usage ratios (RU-ratios) is first presented to describe the occupation degree of a resource by an operation. Next, an intrinsically live structure characterized by a special numerical relationship between arc-weights and initial markings is investigated from a perspective of RU-ratios. Then, a new kind of supervisors is synthesized on the ground of the generic nature of the intrinsically live structure. Such a supervisor can achieve the purposes of both liveness-enforcement and resource usage ratio-enforcement of the system under consideration. Given a plant, it is easy to determine the topological structure of such a supervisor and the number of monitors is bounded by that of resources used in the plant. In addition, when the configuration of the plant model changes, the supervisor can be reusable through adjusting control parameters only without rearrangement of connections. This makes it easy enough and intuitive to be used by industrial practitioners. Instead of maximal behavioral permissiveness, it pursues a precise usage of shared resources that are limited and valuable. Several examples are used to illustrate the proposed methods. (C) 2013 Elsevier Ltd. All rights reserved.