화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.438, No.4, 760-764, 2013
Interrelationship between activation of matrix metalloproteinases and mitochondrial dysfunction in the development of diabetic retinopathy
Mitochondria dysfunction plays a significant role in the apoptosis of retinal cells. Diabetes activates retinal matrix metalloproteinases (MMP-9 and MMP-2), damages retinal mitochondria and activates the apoptotic machinery. This study is to investigate the temporal relationship between the activation of retinal MMPs and mitochondria damage in the development of diabetic retinopathy. Time course of activation of cytosolic MMP-9 and MMP-2 was investigated in the retinal endothelial cells incubated in high glucose for 6-96 h, and correlated with their mitochondrial accumulation and mitochondrial damage. This was confirmed in the retina from rats diabetic for 15 days to similar to 12 months (streptozotocin-induced). The results show that the activation of cytosolic MMP-9 and MMP-2 is an early event, which is followed by their accumulation in the mitochondria. Increased mitochondria! MMPs dysfunction them and begin to damage their DNA, which initiates a vicious cycle of reactive oxygen species. Thus, modulation of these gelatinase MMPs by pharmacological agents during the early stages of diabetes could provide a strategy to inhibit the development of diabetic retinopathy. (C) 2013 Elsevier Inc. All rights reserved.