화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.2, 314-319, April, 1995
양이온 교환된 Faujasite상의 Co 수소화반응에 대한 양자화학적 해석
Quantum Chemical Calculation of Co Hydrogenation over Cation Exchanged Faujasite
초록
Fen+ 교환된 Faujasite 상에서 진행되는 CO 수소화 반응의 특성을 양자화학적 계산을 통해 해석하였다. Faujasite 내 양이온 자리를 표현하는 cluster모델들에 대한 CND0/2 계산을 수행하여 전체에너지, LUMO 에너지 및 Wiberg 결합차수값들을 구하였다. 얻어진 전체에너지와 Wiberg 결합차수는 모델분자들의 구조적 안정성을 나타내었다. CO 수소화 반응의 반응기구도 전체에너지를 통해 고찰하였다. 계산된 LUMO 에너지 같을 통해 모델분자들의 L 산성도를 해석하였다.
Quantum chemical calculations are used to characterize the hydrogenation of carbon monoxide over Fen+ changed faujasite. The method of CNDO/2 calculations have been applied to cluster models representing cation sites in faujasite to obtain total energies, LUMO energies and Wiberg bond orders. The calculated total energies and bond orders of suggested models showed the structural stabilities of cluster models. The reaction mechanism was also discussed by the total energies calculated from the model. And the calculated LUMO energies can predict L acidities of faujasite by the cluster models.
  1. Herrero CP, J. Phys. Chem., 95, 3282 (1991) 
  2. Schrimpf G, Schlenkrich M, Brickmann J, Bopp P, J. Phys. Chem., 96, 7404 (1992) 
  3. Brenard C, Maire ML, J. Phys. Chem., 97, 9595 (1993)
  4. Liu SB, Ma LJ, Lin MW, Wu JF, Chen TL, J. Phys. Chem., 96, 8120 (1992) 
  5. Grunert W, Sauerlandt U, Schlogl R, Karge HG, J. Phys. Chem., 97, 1413 (1993) 
  6. Jacobs WPJH, deHann JW, vandeVen LJM, vanSanten RA, J. Phys. Chem., 97, 10394 (1993) 
  7. Gil B, Broclawik E, Datka J, Klinowski J, J. Phys. Chem., 98(3), 930 (1994) 
  8. Hummel AA, Badani MV, Hummel KE, Delgass WN, J. Catal., 139, 392 (1993) 
  9. Lasperas M, Graffin P, Geneste P, J. Catal., 139, 362 (1993) 
  10. Jung H, Thomson WJ, J. Catal., 139, 375 (1993) 
  11. Sault AG, J. Catal., 140, 121 (1993) 
  12. Sault AG, Datye AK, J. Catal., 140, 136 (1993) 
  13. Landmesser H, Miessner H, J. Phys. Chem., 95, 10544 (1991) 
  14. Yin YG, Zhang Z, Sachtler WMH, J. Catal., 139, 444 (1993) 
  15. Lane GS, Miller JT, Modica FS, Barr MK, J. Catal., 141, 465 (1993) 
  16. Korrane MM, Goodwin JG, Maracelin G, J. Phys. Chem., 97, 673 (1993) 
  17. Kassab E, Seiti K, Allavena M, J. Phys. Chem., 95, 9425 (1991) 
  18. Teunissen EH, vanDuijneveldt FB, vanSanten RA, J. Phys. Chem., 96, 366 (1992) 
  19. Sierra LR, Kassab E, Evaleth EM, J. Phys. Chem., 97, 641 (1993) 
  20. Bates S, Dwyer J, J. Phys. Chem., 97, 5897 (1993) 
  21. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP, J. Am. Chem. Soc., 107, 3902 (1985) 
  22. Levine IN, "Quantum Chemistry," 3rd ed., 499, Allyn and Bacon Inc., Boston (1983)
  23. Pople JA, "Approximate Molecular Orbital Theory," McGraw Hill, New York (1970)
  24. Beran S, J. Phys. Chem., 86, 111 (1982) 
  25. Olson DH, J. Phys. Chem., 74, 2758 (1970) 
  26. Kim JT, Kim MC, Okamoto Y, Imanaka T, J. Catal., 115, 319 (1989)