화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.2, 331-340, April, 1995
폴리에텔렌글리콜 상이동 촉매상에서 p-니트로톨루엔과 Fe(CO)5로부터 p-톨루이딘 합성
Synthesis of p-Toluidine from p-Nitrotoluene and Fe(CO)Synthesis of p-Toluidine from p-Nitrotoluene and Fe(CO)5, with Polyethylene Glycol as Phase Transfer Catalyst
초록
본 연구는 P-니트로톨루엔을 Fe(CO)5,로 환원시켜 P-톨루이딘을 합성하는데 있어서 상이동 촉매인 폴리에틸렌클리콜(PEG)의 특성을 고찰한 것이다. p-니트로톨루엔이 용해된 유기상과 NaOH 수용액상을 접촉시킨 상이동 촉매 반응으로 상온, 상압에서 높은 수율로 p-톨루이딘을 합성할 수 있었다. 교반속도, 수용액상의 NaOH의 농도, PEG의 사슬길이, Fe(CO)5의 농도, 유기용매의 종류, 무기염의 양, 반응온도 등이 반응에 미치는 영향에 관하여 조사하고, 적외선 분광분석과 OH ̄ 이온의 농도분석을 통하여 반응 메카니즘을 제시하였다. PEG는 반응의 활성물질인 HFe(CO)4 ̄ 이온의 착체형성과 수용액상으로부터 이를 유기상으로 전달하는 것을 촉진시키는 작용을 함을 알 수 있었다.
The application of polyethylene glycol (PEG) as phase transfer catalyst to the reduction of p-nitrotoluene by Fe(CO)5 has been investigated in this study. The phase transfer catalytic system, p-nitrotoluene and Fe(CO)5 in organic solvent contracted with aqueous NaOH solution, showed good yield of p-toluidine at 1 atm and room temperature. The effects of agitation speed, NaOH concentration, PEG chain length, Fe(CO)5 concentration, organic solvents and inorganic salt on the reaction rate of p-nitrotoluene were studied. The mechanistic study, carried out by IR and measurement of OH- concentration, revealed that the role of PEG was to facilitate the complex formation of HFe(CO)4- ion, known as active species, and its movement from aqeous to organic phase.
  1. Starcks CM, Liotta C, "Phase Transfer Catalysis," Academic Press, New York (1978)
  2. Ageletti E, Tundo P, Venturello PJ, Org. Chem., 48, 4106 (1983) 
  3. Ger Offen. DE 3,334,8776 (1984)
  4. Evans TL, Synth. Commun., 14, 435 (1984)
  5. Cho BR, Park SD, Bull. Korean Chem. Soc., 5, 126 (1984)
  6. Kimura Y, REgen SL, J. Org. Chem., 48, 1533 (1983) 
  7. Mark HF, Othmer DF, Overberger CG, Seaborg GT, "Encyclopedia of Chemical Technology," 3rd ed., 2, 355, John Wiley & Sons (1983)
  8. Alper H, Damude LC, Organometallics, 1, 579 (1982) 
  9. Abbayes HD, Alper H, J. Am. Chem. Soc., 99, 98 (1977) 
  10. Amaratunga S, Alper H, Tetrahedron Lett., 21, 2603 (1980) 
  11. Hashem KE, Petrignani JF, Alper H, J. Mol. Catal., 26, 285 (1984) 
  12. Kim C, Kim B, Koh J, Lee J, HWAHAK KONGHAK, 30(1), 9 (1992)
  13. Freedman HH, Pure Appl. Chem., 58, 857 (1986)
  14. Gokel GW, Goli PM, Schultz RA, J. Org. Chem., 48, 2837 (1983) 
  15. Kimura Y, Tomita Y, Nakanishi S, Otsuji Y, Chem. Lett., 321 (1979) 
  16. Hui KY, Shaw BL, J. Org. Chem., 124, 262 (1977)
  17. Cann K, Cole T, Slegeir W, Pettit R, J. Am. Chem. Soc., 100, 12 (1978)
  18. Wang ML, Chang KR, Can. J. Chem. Eng., 69, 340 (1991)
  19. Darensbourg MY, Darensbourg DJ, Barros HLC, Inorg. Chem., 17, 297 (1978) 
  20. Schultz RA, Dishong DM, Gokel GW, J. Am. Chem. Soc., 104, 625 (1982) 
  21. Harris JM, Hundley NH, Shannon TG, Struck EC, J. Org. Chem., 47, 4789 (1982) 
  22. Starks CM, "Phase Transfer Catalysis; New Chemistry, Catalysts, and Applications," ACS Symp. Series No. 326, 82, Washington, D.C. (1987)
  23. Reichardt C, "Solvents and Solvent Effects in Organic Chemistry," 2nd ed., VCH Publishers, Weinheim (1988)