- Previous Article
- Next Article
- Table of Contents
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.2, 331-340, April, 1995
폴리에텔렌글리콜 상이동 촉매상에서 p-니트로톨루엔과 Fe(CO)5로부터 p-톨루이딘 합성
Synthesis of p-Toluidine from p-Nitrotoluene and Fe(CO)Synthesis of p-Toluidine from p-Nitrotoluene and Fe(CO)5, with Polyethylene Glycol as Phase Transfer Catalyst
초록
본 연구는 P-니트로톨루엔을 Fe(CO)5,로 환원시켜 P-톨루이딘을 합성하는데 있어서 상이동 촉매인 폴리에틸렌클리콜(PEG)의 특성을 고찰한 것이다. p-니트로톨루엔이 용해된 유기상과 NaOH 수용액상을 접촉시킨 상이동 촉매 반응으로 상온, 상압에서 높은 수율로 p-톨루이딘을 합성할 수 있었다. 교반속도, 수용액상의 NaOH의 농도, PEG의 사슬길이, Fe(CO)5의 농도, 유기용매의 종류, 무기염의 양, 반응온도 등이 반응에 미치는 영향에 관하여 조사하고, 적외선 분광분석과 OH ̄ 이온의 농도분석을 통하여 반응 메카니즘을 제시하였다. PEG는 반응의 활성물질인 HFe(CO)4 ̄ 이온의 착체형성과 수용액상으로부터 이를 유기상으로 전달하는 것을 촉진시키는 작용을 함을 알 수 있었다.
The application of polyethylene glycol (PEG) as phase transfer catalyst to the reduction of p-nitrotoluene by Fe(CO)5 has been investigated in this study. The phase transfer catalytic system, p-nitrotoluene and Fe(CO)5 in organic solvent contracted with aqueous NaOH solution, showed good yield of p-toluidine at 1 atm and room temperature. The effects of agitation speed, NaOH concentration, PEG chain length, Fe(CO)5 concentration, organic solvents and inorganic salt on the reaction rate of p-nitrotoluene were studied. The mechanistic study, carried out by IR and measurement of OH- concentration, revealed that the role of PEG was to facilitate the complex formation of HFe(CO)4- ion, known as active species, and its movement from aqeous to organic phase.
- Starcks CM, Liotta C, "Phase Transfer Catalysis," Academic Press, New York (1978)
- Ageletti E, Tundo P, Venturello PJ, Org. Chem., 48, 4106 (1983)
- Ger Offen. DE 3,334,8776 (1984)
- Evans TL, Synth. Commun., 14, 435 (1984)
- Cho BR, Park SD, Bull. Korean Chem. Soc., 5, 126 (1984)
- Kimura Y, REgen SL, J. Org. Chem., 48, 1533 (1983)
- Mark HF, Othmer DF, Overberger CG, Seaborg GT, "Encyclopedia of Chemical Technology," 3rd ed., 2, 355, John Wiley & Sons (1983)
- Alper H, Damude LC, Organometallics, 1, 579 (1982)
- Abbayes HD, Alper H, J. Am. Chem. Soc., 99, 98 (1977)
- Amaratunga S, Alper H, Tetrahedron Lett., 21, 2603 (1980)
- Hashem KE, Petrignani JF, Alper H, J. Mol. Catal., 26, 285 (1984)
- Kim C, Kim B, Koh J, Lee J, HWAHAK KONGHAK, 30(1), 9 (1992)
- Freedman HH, Pure Appl. Chem., 58, 857 (1986)
- Gokel GW, Goli PM, Schultz RA, J. Org. Chem., 48, 2837 (1983)
- Kimura Y, Tomita Y, Nakanishi S, Otsuji Y, Chem. Lett., 321 (1979)
- Hui KY, Shaw BL, J. Org. Chem., 124, 262 (1977)
- Cann K, Cole T, Slegeir W, Pettit R, J. Am. Chem. Soc., 100, 12 (1978)
- Wang ML, Chang KR, Can. J. Chem. Eng., 69, 340 (1991)
- Darensbourg MY, Darensbourg DJ, Barros HLC, Inorg. Chem., 17, 297 (1978)
- Schultz RA, Dishong DM, Gokel GW, J. Am. Chem. Soc., 104, 625 (1982)
- Harris JM, Hundley NH, Shannon TG, Struck EC, J. Org. Chem., 47, 4789 (1982)
- Starks CM, "Phase Transfer Catalysis; New Chemistry, Catalysts, and Applications," ACS Symp. Series No. 326, 82, Washington, D.C. (1987)
- Reichardt C, "Solvents and Solvent Effects in Organic Chemistry," 2nd ed., VCH Publishers, Weinheim (1988)