화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.117, No.42, 12734-12741, 2013
Molecular Binoculars: How to Spatially Resolve Environmental Fluctuations by Following Two or More Single-Molecule Spectral Trails at a Time
We propose a novel type of spectral diffusion experiment that enables one to decouple spatial characteristics of the environmental fluctuations, such as their concentration, from the interaction with the chromophore. Traditional hole broadening experiments do not allow for such decoupling in the common case when the chromophore-environment interaction is scale invariant. Here we propose to simultaneously follow the spectral trails of a small number of nearby chromophores-two or more-which thereby sense a highly overlapping set of the fluctuations. To this end, we estimate the combined probability distribution for the frequencies of a set of chromophores contained within the same sample. The present setup introduces a new length scale, i.e., the interchromophore distance, which breaks the aforementioned scale invariance and enables one to determine independently the concentration of the environmental fluctuations and their coupling to the chromophores, by monitoring the time after which spectral diffusion of distinct chromophores becomes uncorrelated. We illustrate these results with structural excitations in low temperature glasses.