화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.135, No.40, 15026-15032, 2013
How Light-Harvesting Semiconductors Can Alter the Bias of Reversible Electrocatalysts in Favor of H-2 Production and CO2 Reduction
The most efficient catalysts for solar fuel production should operate close to reversible potentials, yet possess a bias for the fuel-forming direction. Protein film electrochemical studies of Ni-containing carbon monoxide dehydrogenase and [NiFeSe]-hydrogenase, each a reversible electrocatalyst, show that the electronic state of the electrode strongly biases the direction of electrocatalysis of CO2/CO and H+/H-2 interconversions. Attached to graphite electrodes, these enzymes show high activities for both oxidation and reduction, but there is a marked shift in bias, in favor of CO2 or H+ reduction, when the respective enzymes are attached instead to n-type semiconductor electrodes constructed from CdS and TiO2 nanoparticles. This catalytic rectification effect can arise for a reversible electrocatalyst attached to a semiconductor electrode if the electrode transforms between semiconductor- and metallic-like behavior across the same narrow potential range (<0.25 V) that the electrocatalytic current switches between oxidation and reduction.