화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.135, No.45, 17135-17143, 2013
Fluorogenic alpha-Tocopherol Analogue for Monitoring the Antioxidant Status within the Inner Mitochondria! Membrane of Live Cells
We report here the preparation of a lipophilic fluorogenic antioxidant (Mito-Boclipy-TOH) that targets the inner mitochondrial lipid membrane (IMM) and is sensitive to the presence of lipid peroxyl radicals, effective chain carriers in the lipid chain autoxidation. Mito-Bodipy-TOH enables monitoring of the antioxidant status, i.e., the antioxidant load and ability to prevent lipid chain autoxidation, within the inner mitochondrial membrane of live cells. The new probe consists of 3 segments: a receptor, a reporter, and a mitochondria-targeting element, constructed, respectively, from an alpha-tocopherol-like chromanol moiety, a BODIPY fluorophore, and a triphenylphosphonium cation (TPP). The chromanol moiety ensures reactivity akin to that of a-tocopherol, the most potent naturally occurring lipid soluble antioxidant, while the BODIPY fluorophore and TPP ensure partitioning within the inner mitochondrial membrane. Mechanistic studies conducted either in homogeneous solution or in liposomes and in the presence of free radical initiators show that the antioxidant activity of Mito-Bodipy-TOH is on par with that of a-tocopherol. Studies conducted on live fibroblast cells further show the antioxidant depletion in the presence of methyl viologen (paraquat), a known agent of oxidative stress and source of superoxide radical anion (and indirectly, a causative of lipid peroxidation) within the mitochondria matrix. We recorded a ca. 8-fold emission enhancement with Mito-Bodipy-TOH in cells stressed with methyl viologen, whereas no enhancement was observed in control studies with untreated cells. Our findings underscore the potential of the new fluorogenic antioxidant Mito-Bodipy-TOH to study the chemical link between antioxidant load, lipid peroxidation and mitochondrial physiology.