Langmuir, Vol.29, No.34, 10737-10743, 2013
Temperature-Dependent Self-Assembly of Adenine Derivative on HOPG
Temperature-dependent self-assembly formed by the adsorption of the nucleobase adenine derivative on a graphite surface were investigated by in situ scanning tunneling microscopy (STM). The high-resolution STM images reveal two types of structures, a phase and beta phase, which are mainly driven by either hydrogen bonding or aromatic pi-pi interactions between adenine bases, respectively, as well as the interactions of alkyl chains alpha-Phase structures can be transformed into beta-phase structures by increasing temperature. The reverse is true for decreasing temperature. This reflects structural stabilities resulting from the different interactions Density functional theory (DFT) calculations were performed to characterize possible arrangements of adjacent adenine moieties systematically in terms of binding energies and structural properties. Via a systematic search algorithm, all possible network structures were determined on a microscopic level. In this way, it is possible to rationalize the structural parameters as found in the STM images.