Langmuir, Vol.29, No.40, 12337-12341, 2013
Self-Consistent Colloidal Energy and Diffusivity Landscapes in Macromolecular Solutions
We report a dynamic analysis to simultaneously measure colloidal forces and hydrodynamic interactions in the presence of both adsorbed and unadsorbed macromolecules. A Bayesian inference method is used to self-consistently obtain the position-dependent potential energy (i.e., energy landscape) and diffusivity (i.e., diffusivity landscape) from measured colloidal trajectories normal to a wall. Measurements are performed for particles and surfaces with adsorbed polyethylene oxide (PEO) copolymer as a function of unadsorbed PEO homopolymer concentration. Energy landscapes are well described by a steric repulsion between adsorbed brushes and depletion attraction due to unadsorbed macromolecules. Diffusivity landscapes show agreement with predicted short-range permeable brush models and long-range mobilities determined by the bulk solution viscosity. Lower than expected mobilities in the vicinity of overlapping depletion layers are attributed to interactions of adsorbed and unadsorbed macromolecules altering nonconservative lubrication forces.