Langmuir, Vol.29, No.43, 13258-13268, 2013
Critical Role of the Degree of Substitution in the Interaction of Biocompatible Cholic Acid-Modified Dextrans with Phosphatidylcholine Liposomes
The interaction between biocompatible cholic acid-modified dextrans with different pendent cholic acid groups' content and phosphatidylcholine liposomes was studied by a variety of techniques including isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), turbidity measurements, microscopy imaging (transmission electron microscopy (TEM), and cryo-scanning electron microscopy (cryo-SEM)). The variation of the interaction enthalpy with polymer concentration, as obtained by ITC, highlighted the formation of different aggregates. Complete phase modification, from vesicles covered with a few polymer chains to vesicle disintegration, was observed by turbidity measurements. DSC showed the effect of polymer addition to the liposome gel to liquid-crystalline phase transition, and microscopy images gave information about the size and morphology of the aggregates. The composition, structure, and morphology of polymer/liposome aggregates were found to be strongly influenced by the cholic acid content in the polymer (degree of substitution, DS). Along with a rather monotonous change in the polymer/liposome system's properties with increasing DS, a discontinuity in behavior could also be observed at DS = 4 mol %. For DS <= 4 mol %, the polymer/liposome interaction takes place mainly between individual components, and liposome disintegration occurs in a narrow concentration range, whereas for DS > 4 mol % extended physical networks are formed, which last over a wide concentration range. A mechanism of interaction, as a function of DS, is proposed and discussed in detail.