Polymer, Vol.54, No.22, 6125-6132, 2013
Synthesis and photovoltaic properties of donor-acceptor polymers incorporating a structurally-novel pyrrole-based imide-functionalized electron acceptor moiety
A structurally-novel pyrrole-based imide-functionalized electron accepting monomer unit, 4,6-dibromo-2,5-dioctylpyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione (DPPD), was prepared. The new DPPD unit was copolymerized with pyrrole-based electron rich monomers, such as thiophene-(N-alkyl)pyrrole-thiophene (TPT) and fused thiophene-(N-alkyl)pyrrole-thiophene (DTP) derivatives, to afford two new polymers, namely P(TPT-DPPD) and P(DTP-DPPD), respectively. The two polymers showed a strong absorption band at 300-600 nm and 300-650 nm, respectively, and their calculated optical band gaps were 2.09 eV and 1.89 eV, respectively. The electrochemical analysis reveals that the highest occupied molecular orbital (HOMO) energy levels of P(TPT-DPPD) and P(DTP-DPPD) were positioned at -5.55 eV and -5.24 eV, respectively, whereas their lowest unoccupied molecular orbital (LUMO) energy levels were positioned at -3.46 eV and -3.35 eV, respectively. The preliminary photovoltaic properties of the polymers, P(TPT-DPPD) and P(DTP-DPPD), were examined by fabricating polymer solar cells (PSCs) with each polymer as an electron donor and PC71BM as an electron acceptor. The PSCs fabricated with the configuration of ITO/PEDOT:PSS/P(TPT-DPPD) or P(DTP-DPPD):PC71BM/LiF/Al showed maximum power conversion efficiency (PCE) of 0.73% and 1.64%, respectively. (C) 2013 Elsevier Ltd. All rights reserved.