화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.5, 842-848, October, 1995
Poly(a-methylstyrene-b-hydrogenated isoprene)의 PS/LDPE 블렌드에서의 상용화 효과
Compatibilizing Effects of Poly(α-methylstyrene-b-hydrogenated isoprene) in PS/LDPE blend
초록
본 연구에서는 상용화제로써 블럭공중합체인 poly(α-methylstyrene-b-isoprene)가 첨가된 PS/LDPE 블렌드에 대해 연구하였다. 이 블럭 공중합체는 음이온리빙중합으로 합성하였으며, 개시제와 단량체의 몰비율, 단량체간의 몰비율을 변화시켜 분자량과 이소프렌 블럭의 길이를 조절하였다. LDPE에 대한 친화력을 증가시키기 위해 이 블럭공중합체의 이소프렌블럭을 수소화시켰다. 합성된 공중합체가 첨가된 PS/LDPE(30/70)블렌드에 있어 파단 신장률이 현저하게 증가 하였는데, 특히, 최적 이소프렌블럭길이에서 최대점을 보이는 것을 알 수 있었다. 또한, LDPE 중량평균분자랑 89K에 대해 이소프렌 블럭의 분자량이 53K정도에서 가장 좋은 파단신장률을 보였다. 이들의 모폴로지 관찰에서도 상용뫄제를 첨가한 경우 더욱 세밀하고 균일한 분산상을 얻을 수 있음을 알았다.
In this study, blend of PS/LDPE to which a block copolymer, poly(α-methylstyrene-b-isoprene), was added for a compatibilizer was investigated. The block copolymer was synthesized via living anionic polymerization in which mole ratio of initiator/monomer and monomer/monomer was changed to control molecular weights and isoprene block lengths. The isoprene block in the block copolymer was hydrogenated to increase affinity to LDPE. A PS/LDPE(30/70) blend containing the block copolymer showed remarkable increase in ultimate tensile elongation at break. Especially, it was found that with an optimum value of the isoprene block length, there appeared a maximum value of ultimate tensile elongation at break. Also, for the LDPE having molecular weight of 80K, the addition of the block copolymer in which molecular weight of isoprene block was 53K enhanced the mechanical properties most significantly. Morphology studies of the blends containing the compatibilizer showed finer and more homogeneous dispersed phase than virgin PS/LDPE blend.
  1. Paul DR, Vinson CE, Locke CE, Polym. Eng. Sci., 12, 157 (1972) 
  2. Paul DR, "Polymer Blends," D.R. Paul and S. Newman ed., 2, Chapl 1, 35, Academic Press, N.Y. (1978)
  3. Gaylord NG, "Copolymers, Polyblends, and Composites," N.A.J. Platzer, ed., Adv. in Chem. Ser., 142, 76, ACS, Washington D.C. (1975)
  4. Paul DR, Locke CE, Vinson CE, Polym. Eng. Sci., 13, 202 (1973) 
  5. Locke CE, Paul DR, J. Appl. Polym. Sci., 17, 2597 (1973) 
  6. Locke CE, Paul DR, J. Appl. Polym. Sci., 17, 2791 (1973) 
  7. Barentsen WM, Heikens D, Polymer, 14, 579 (1973) 
  8. Barentsen WM, Heikens D, Piet P, Polymer, 15, 119 (1974) 
  9. Ide F, Hasegawa A, J. Appl. Polym. Sci., 18, 963 (1974) 
  10. Heikens D, Barentsen WM, Polymer, 18, 69 (1977) 
  11. Heikens D, hoen N, Barentsen W, Piet P, Ladan H, J. Polym. Sci. Polym. Symp., 62, 309 (1978)
  12. Krigas TM, Canella JM, Struglinski MJ, Crist B, Graessley W, J. Polym. Sci. B: Polym. Phys., 23, 509 (1985)
  13. Harwood HJ, Russel DB, Verthe JJA, Zymonas J, Makromol. Chem., 163, 1 (1973) 
  14. Uraneck CA, J. Polym. Sci. A: Polym. Chem., 9, 2273 (1971) 
  15. Antkowiak TA, Oberster AE, Halasa AF, Tate DP, J. Polym. Sci. A: Polym. Chem., 10, 1319 (1972) 
  16. Forman LE, "Polymer Chemistry of Synthetic Elastomers," J.P. Kennedy and E. Tornqvist, eds., Part II, 552, 567~569, Wiley, N.Y. (1969)