Korean Journal of Chemical Engineering, Vol.31, No.1, 50-55, January, 2014
Electrochemical properties related to the thickness control of the solid oxide fuel cell component layer using decalcomania paper
E-mail:
We fabricated anode-supported solid oxide fuel cells using decalcomania paper. To investigate the changes in thickness of the component layer and electrical properties in a unit cell, the number of layers of cathodes and the electrolyte decalcomania paper is changed. As a result, the thickness of the electrolyte and cathode layer regularly increases with an increase in the number of decalcomania papers attached. In addition, when only one electrolyte decalcomania
paper is attached to an anode support, a tight and dense 8 μm electrolyte layer is obtained. A unit cell with a cathode thickness of 120 μm to which decalcomania paper is attached nine times is shown to have an open circuit voltage (OCV) of 1.08 V and a maximum power density (MPD) of 902 mW cm^(-2) at 800 ℃.
Keywords:Solid Oxide Fuel Cells;Decalcomania Method;Cathode Thickness;Cell Performance;Electrolyte Thickness
- Minn NQ, J. Am. Ceram. Soc., 76, 563 (1993)
- Lu ZG, Zhou XD, Fisher D, Templeton J, Stevenson J, Wu NJ, Ignatiev A, Electrochem. Commun., 12, 179 (2010)
- Kim SD, Hyun SH, Moon J, Kim JH, Song RH, J. Power Sources, 139(1-2), 67 (2005)
- Steele BCH, Heinzel A, Nature., 414, 345 (2001)
- Ishihara T, Shibayama T, Honda M, Nishiguchi H, Takita Y, J. Electrochem. Soc., 147(4), 1332 (2000)
- Desouza S, Visco SJ, Dejonghe LC, Solid State Ion., 98(1-2), 57 (1997)
- Molin S, Lewandowska-Iwaniak W, Kusz B, Gazda M, Jasinki P, J. Electroceram., 28, 80 (2012)
- Wang CH, Worrell WL, Park S, Vohs JM, Gorte RJ, J. Electrochem. Soc., 148(8), A864 (2001)
- Tsai TP, Perry E, Barnett S, J. Electrochem. Soc., 144(5), L130 (1997)
- Simwonis D, Thulen H, Dias FJ, Naoumidis A, Stover D, J.Mater. Process. Technol., 92-93, 107 (1999)
- Dillon SJ, Helmick L, Miller HM, Wilson L, Gemman R, Petrova RV, Barmak K, Rohrer GS, Salvador PA, J. Am. Ceram. Soc., 94(11), 4045 (2011)
- Srivastava PK, Quach T, Duan YY, Donelson R, Jiang SP, Ciacchi FT, Badwal SP, Solid State Ion., 99(3-4), 311 (1997)
- Lu Z, Hardy J, Templeton J, Stevenson J, J. Power Sources., 198, 90 (2012)
- Vanherle J, Mcevoy AJ, Thampi KR, Electrochim. Acta, 41(9), 1447 (1996)
- Choi JJ, Qin WT, Liu MF, Liu ML, J. Am. Ceram. Soc., 94(10), 3340 (2011)
- Wang Z, Qian J, Cao J, Wang S, Wen T, J. Alloys Compounds., 437, 264 (2007)
- Hassan AAE, Menzler NH, Blass G, Ali ME, Buchkremer HP, Stover D, J. Mater. Sci., 37(16), 3467 (2002)
- Ried P, Lorenz C, Bronstrup A, Graule T, Menzler NH, Sitte W, Holtappels P, J. European Ceram. Soc., 28, 1801 (2008)
- Zhao L, Huang X, Zhu R, Lu Z, Sun W, Zhang Y, Ge X, Liu Z, Su W, J. Phys. Chem. Solids., 69, 2019 (2008)
- Bai Y, Liu J, Wang C, J. Hydrog. Energy., 34, 7311 (2009)
- Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler LJ, Solid State Ion., 131(1-2), 79 (2000)
- Kharton VV, Marques FMB, Atkinson A, Solid State Ion., 174(1-4), 135 (2004)
- Fukui T, Ohara S, Naito M, Nogi K, J. Nano. Res., 3, 171 (2001)
- Haanappel VAC, Mertens J, Rutenbeck D, Tropartz C, Herzhof W, Sebold D, Tietz F, J. Power Sources, 141(2), 216 (2005)