화학공학소재연구정보센터
Nature Nanotechnology, Vol.3, No.6, 342-346, 2008
A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator
Sensors based on nanoelectromechanical systems vibrating at high and ultrahigh frequencies(1) are capable of levels of performance that surpass those of larger sensors. Nanoelectromechanical devices have achieved unprecedented sensitivity in the detection of displacement(2), mass(3), force(4) and charge(5). To date, these milestones have been achieved with passive devices that require external periodic or impulsive stimuli to excite them into resonance. Here, we demonstrate an autonomous and self-sustaining nanoelectromechanical oscillator that generates continuous ultrahigh-frequency signals when powered by a steady d.c. source. The frequency-determining element in the oscillator is a 428 MHz nanoelectromechanical resonator that is embedded within a tunable electrical feedback network to generate active and stable self-oscillation. Our prototype nanoelectromechanical oscillator exhibits excellent frequency stability, linewidth narrowing and low phase noise performance. Such ultrahigh-frequency oscillators provide a comparatively simple means for implementing a wide variety of practical sensing applications. They also offer intriguing opportunities for nanomechanical frequency control, timing and synchronization.