화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.6, 1054-1068, December, 1995
질소와 산소의 혼합물에서 이상흡착용액이론 및 근사계산법에 의한 흡착평형의 예측
Prediction of Adsorption Equilibria for Mixture of Nitrogen and Oxygen on Molecular Sieve 5A by IAS Theory and Approximation Methods
초록
기상과 평형에 있는 흡착질상을 열역학적 이상용액으로 취급하여, 기체혼합물에 대해 순수성분의 등온흡착식으로부터 기상의 조성과 흡착질상 사이의 흡착관계식을 유도하는 이상흡착용액이론(ideal adsorbed solution theory, IAST)을 질소와 산소의 혼합물에 적용하여 평형흡착량을 예측하고 혼합기체에 대한 실험으로 구한 흡착량과 비교하였다. Molecular sieve 5A의 흡착등온선은 정적흡착실험법으로 측정하였다. IAST로부터 혼합물의 흡착량을 예측하는 데는 간단한 Langmuir isotherm을 사용해도 반복계산이 반드시 필요하다. 이러한 반복계산과정을 생략하기 위해 제안된 근사계산법들을 이용하면, 예측값들은 IAST로부터 얻은 값과 큰 차이를 보이지 않으면서도, 상대적으로 간단하게 혼합물의 흡착량을 구할 수 있음을 알 수 있었다. 세 가지 근사계산법들 중에서 Padeapproximation과 Taylor-series expansion을 이용하여 얻은 결과값들은 IAST로 얻은 결과와 거의 일치하였다.
Adsorbed amounts from the mixture of nitrogen and oxygen on molecular sieve 5A were measured by static adsorption experiment. The experimental results were compared with the theoretical results calculated by ideal adsorbed solution theory(IAST) which treats the mixed adsorbate as an ideal solution in equilibrium with the gas phase and allows prediction of multicomponent equilibria from single-component isotherms alone. The equations resulting from IAST, however, must be solved iteratively even for the simple Langmuir isotherm. Three approximation methods were suggested in order to alleviate mathematical difficulties in the prediction of multicomponent equilibria, while making little or no loss in the accuracy of the calculation. Among the approximation methods, Padeapproximation and Taylor-series expansion methods gave excellent agreement with the exact results calculated by IAST.
  1. Yang RT, "Gas Separation by Adsorption Processes," Butterworths, MA (1987)
  2. Ruthven DM, "Principles of Adsorption and Adsorption Processes," John Wiley & Sons, New York (1984)
  3. Lyers AL, Prausnitz JM, AIChE J., 11, 121 (1965) 
  4. Valenzuela DP, Myers AL, "Adsorption Equilibrium Data Handbook," Prentice-Hall, New Jersey (1989)
  5. Frey DD, Rodrigues AE, AIChE J., 40(1), 182 (1994) 
  6. Faries JD, Burden RL, "Numerical Methods," PWS Publishing Company, Boston (1993)
  7. Kidnay AJ, Myers AL, AIChE J., 12, 981 (1966) 
  8. Levan MD, Vermeulen T, J. Phys. Chem., 85, 3247 (1981) 
  9. Smith JM, VanNess HC, "Introduction to Chemical Engineering Thermodynamics," McGraw-Hill, New York (1987)
  10. Verelst H, Baron GV, J. Chem. Eng. Data, 30, 66 (1985) 
  11. Ruthven DM, Kumar R, Ind. Eng. Chem. Fundam., 19, 22 (1980)