Journal of the Korean Industrial and Engineering Chemistry, Vol.6, No.6, 1108-1115, December, 1995
전기전도성 Polyaniline-Polystyrene 복합체의 제조와 성질에 관한 연구
Studies on the Preparation and Properties of Electrically Conductive Polyaniline -Polystyrene Composites
초록
아닐린 중합시 용액블렌딩에 의해 전기전도성 polyanlllne-polystyrene(PANI-PS) 복합체를 얻을 수 있었다. 아닐린 중합은 도판트인 dodecylbenzenesulfonic acid(DBSA)의 xylene 용액에 녹아 있는 산화제를 아닐린과 PS의 xylene 용액에 첨가하여 행하였다. PANI-PS 복합체의 진기전도도는 PANI의 함유량이 증가 할수록 증가 하였고, 12wt%의 낮은 함유량에서 0.1S/cm의 높은 값에 도달할 수 있었다. PANI-PS 복합제에서 PANI의 함유량은 원소분석과 중량 측정에 의해 계산하였다. PANI-PS 복합체는 chloroform, xylene, NMP와 같은 유기용매에 매우 잘 용해되었다. DBSA로 도핑된 순수한 PANI을 180℃에서 3시간 동안 열처리한 후 그 전기전도도는 HCI로 도핑된 PANI의 전기전도도보다 훨씬 더 안정하였다. 주사전자현미경과 FT-IR 측정을 통하여 PANI-PS 복합체의 구조와 형태를 조사하였다.
Electrically conductive polyaniline-polystyrene(PANI-PS) composites could be obtained by the solution blending in situ polymerization of aniline. The polymerization was carried out by adding the oxidant solution dissolved dodecylbenzenesulfonic acid (DBSA) in xylene to the xylene solution contained aniline and PS. The electrical conductivity of PANI-PS composites increased with increasing the content of PANI and could reach value as high as 0.1S/cm with a low content of 12wt.%. The PANI contents in PANI-PS composites were calculated by means of elemental analysis and weight measurements. The PANI-PS composites were very soluble in organic solvents such as chloroform, xylene and NMP. The electrical conductivity, after the PANI doped wish DBSA was thermally treated at 180℃ for 3hrs, was more stable than that of PANI doped wllh HCl. The structure and morphology of the PANI-PS composites were investigated through the measurements of Scanning Electron Micrograph(SEM) and FT-IR.
- Shirakawa H, Louis EJ, MacDiarmid AG, Heeger AJ, J. Chem. Soc.-Chem. Commun., 578 (1977)
- Oh SY, Akagi K, Shirakawa H, Synth. Met., 32, 245 (1989)
- Genies EM, Tsintavis C, J. Electroanal. Chem., 195, 109 (1985)
- Akagi K, Suezaki M, Shirakawa H, Kyotani H, Shimomura M, Tannabe Y, Synth. Met., 28, D1 (1989)
- Cai Z, Martin CR, J. Am. Chem. Soc., 111, 4138 (1989)
- Geneies EM, Boyle A, Lapkowski M, Tsintavis C, Synth. Met., 36, 139 (1990)
- Gustafsson G, Cao Y, Trevedi GM, Klavetter F, Colaneri N, Heeger AJ, Nature, 357, 447 (1992)
- Dhawan SK, Trivedi DC, J. Appl. Electrochem., 22, 563 (1992)
- Dhawan SK, Trivedi DC, EMCJ, 4, 1 (1991)
- Dao LH, Leclerc M, Guay J, Chevalier JW, Synth. Met., 29, E377 (1989)
- Li S, Cao Y, Xue Z, Synth. Met., 20, 141 (1987)
- Chen SA, Fang WG, Macromolecules, 24, 293 (1991)
- Cao Y, Smith P, Heeger AJ, Synth. Met., 48, 91 (1992)
- Oh SY, Ezaki R, Akagi K, Shirakawa H, J. Polym. Sci. A: Polym. Chem., 31, 2977 (1993)
- Oh SY, Akagi K, Shirakawa H, Araya K, Macromolecules, 26, 6023 (1993)
- Agaki K, Goto H, Kadokura Y, Shirakawa H, Oh SY, Araya K, Synth. Met., 69, 13 (1995)
- Zallen R, "The Physics of Amorphous Solids," Wiley, New York (1983)
- Cooper EC, Vincent B, J. Phys. D: Appl. Phys., 22, 1580 (1989)