Clean Technology, Vol.19, No.4, 370-378, December, 2013
금속-유기 골격계 다공성 흡착제의 이산화탄소 흡착성능과 압력순환흡착 공정 적용의 문제점
Capability of CO2 on Metal-Organic Frameworks-Based Porous Adsorbents and Their Challenges to Pressure Swing Adsorption Applications
E-mail:
초록
본 논고에서는 가스 흡착.분리 산업에서 광범위하게 적용되고 있는 압력순환흡착(pressure swing adsorption, PSA) 기술의 전형적인 흡착조건인 15~40 ℃의 온도와 4~6 bar의 압력에서 금속-유기 골격체(metal-organic frameworks, MOF)와 제올라이트 이미다졸레이트 골격체(zeolite imidazolate frameworks, ZIF)의 CO2 흡착성능을 살펴보고 이들이 가지고 있는 장.단점을 분석해보고자 한다. CO2는 H2, CO, N2 및 CH4와 같은 기체분자들에 비해 큰 분극률을 가지므로 동일한 세공크기라면 흡착제의 비표면적이 클수록 높은 흡착량을 보이며, CO2의 분자크기(3.3 Å)보다 큰 세공으로 이루어진 흡착제라면 상기 흡착조건에서의 CO2 흡착성능은 세공크기에 크게 영향을 받는다. MOF와 ZIF의 CO2 흡착성능은 이들의 골격을 이루는 금속과 유기 링커의 종류, 세공크기, 비표면적, 흡착조건(온도와 압력) 등에 따라 달라질 수 있지만, 특히 흡착압력의 영향이 절대적이다. 다시 말하면, CO2의 흡착압력이 비슷할 경우 MOF와 ZIF의 CO2 흡착량에 미치는 상기 인자들의 영향은 비교적 작다. 15 bar 이상의 CO2 흡착압력에서 이 흡착제들이 수 십 mmol/g의 흡착성능을 나타낸다고 할지라도, 전형적인 PSA 공정조건에서 이들의 CO2 흡착성능은 제올라이트, 활성탄과 같은 벤치마크 흡착제들의 성능과 유사하거나 오히려 낮을 뿐만 아니라, 이들의 가격은 벤치마크들에 비해 매우 높기 때문에 경제성 확보에 어려움이 있다.
This review has shown the capability of MOFs and ZIFs materials to adsorb CO2 under typical PSA temperatures and pressures. The usual operating conditions are adsorption temperatures of 15~40 ℃ and adsorption pressures of 4~6 bar based on numerous PSA processes which are widely employed in gases industry for adsorptive separation of CO2. The extent of CO2 adsorption on the microporous materials depends on the metal species and organic linkers existing in the frameworks. The pore size and the surface area, and the process variables are the key parameters to be associated with the efficiency of the adsorbents, particularly adsorption pressures if other variables are comparable each other. The MOFs and ZIFs materials require high pressures greater than 15 bar to yield significant CO2 uptakes. They possess a CO2 adsorption capacity which is very similar to or less than that of conventional benchmark adsorbents such as zeolites and activated carbons. Consequently, those materials have been much less cost-effective for adsorptive CO2 separation to date because of very high production price and the absence of commercially-proven PSA processes using such new adsorbents.
Keywords:Metal-organic frameworks (MOF);Adsorbents;Pressure swing adsorption (PSA);Zeolites;Adsorptive separation
- Yang WH, Kim MH, Korean J. Chem. Eng., 23(6), 908 (2006)
- Wigley TML, Geophys. Res. Lett., 25, 2285 (1998)
- US EPA, “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2011,” Report No. EPA 430-R-13-001, April (2013)
- UNEP (the United Nations Environment Programme), “The Emissions Gap Report 2012: A UNEP Synthesis Report,” November (2012)
- ASME, “General Position Statement on Technology and Policy Recommendations and Goals for Reducing Carbon Dioxide Emissions in the Energy Sector,” April (2009)
- Stockholm Environment Institute, “Issues and Options for Benchmarking Industrial GHG Emissions,” June (2010)
- Wang Q, Luo J, Zhong Z, Borgna A, Energy Environ. Sci., 4, 42 (2011)
- Yaghi OM, Li GM, Li HL, Nature, 378(6558), 703 (1995)
- Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O'Keeffe M, Yaghi OM, PNAS., 103, 10186 (2006)
- McBain JW, The Sorption of Gases and Vapors by Solids, G. Routledge & Sons, London, 1 (1932)
- Wagner P, Yoshikawa M, Lovallo M, Tsuji K, Tsapatsis M, Davis ME, Chem. Commun., 2179 (1997)
- Freyhardt CC, Tsapatsis M, Lobo RF, Balkus KJ, Davis ME, Nature, 381(6580), 295 (1996)
- Lobo RF, Tsapatsis M, Freyhardt CC, Khodabandeh S, Wagner P, Chen CY, Balkus KJ, Zones SI, Davis ME, J. Am. Chem. Soc., 119(36), 8474 (1997)
- Loiseau T, Ferey G, J. Solid State Chem., 111, 403 (1994)
- Huo Q, Xu R, Li S, Ma Z, Thomas JM, Chippindale AM, J. Chem.Soc., Chem. Commun., 875 (1992)
- Millward AR, Yaghi OM, J. Am. Chem. Soc., 127(51), 17998 (2005)
- Prez-Pellitero J, Amrouche H, Siperstein FR, Pirngruber G, Nieto-Draghi C, Chaplais G, Simon-Masseron A, Bazer-Bachi D, Peralta D, Bats N, Chem. Eur. J., 16, 1560 (2010)
- Li JR, Kuppler RJ, Zhou HC, Chem. Soc. Rev., 38, 1477 (2009)
- Yang RT, Adsorbents: Fundamental and Applications, John Wiley & Sons, Hoboken, 1 (2003)
- Cote AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM, Science., 310, 1166 (2005)
- El-Kaderi HM, Hunt JR, Mendoza-Cortes JL, Cote AP, Taylor RE, O'Keeffe M, Yaghi OM, Science., 316, 268 (2007)
- Tagliabue M, Farrusseng D, Valencia S, Aguado S, Ravon U, Rizzo C, Corma A, Mirodatos C, Chem. Eng. J., 155(3), 553 (2009)
- Palomino M, Corma A, Jorda JL, Rey F, Valencia S, Chem.Commun., 48, 215 (2012)
- Krishna R, van Baten JM, Sep. Purif. Technol., 87, 120 (2012)
- Yuan D, Zhao D, Sun D, Zhou HC, Angew. Chem. Int. Ed., 49, 5357 (2010)
- Dasgupta S, Biswas N, Aarti, Gode NG, Divekar S, Nanoti A, Goswami AN, Int.J. Greenhouse Gas Control., 7, 225 (2012)
- Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID, Science, 283(5405), 1148 (1999)
- Wang QM, Shen D, Bulow M, Lau ML, Deng S, Fitch FR, Lemcoff NO, Semanscin J, Micropor. Mesopor. Mater., 55, 217 (2002)
- Chowdhury P, Bikkina C, Meister D, Dreisbach F, Gumma S, Micropor. Mesopor. Mater., 117, 406 (2009)
- Liang ZJ, Marshall M, Chaffee AL, Energy Fuels, 23, 2785 (2009)
- Llewellyn PL, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, De Weireld G, Chang JS, Hong DY, Hwang YK, Jhung SH, Ferey G, Langmuir, 24(14), 7245 (2008)
- Miller SR, Pearce GM, Wright PA, Bonino F, Chavan S, Bordiga S, Margiolaki I, Guillou N, Feerey G, Bourrelly S, Llewellyn PL, J. Am. Chem. Soc., 130(47), 15967 (2008)
- Bastin L, Barcia PS, Hurtado EJ, Silva JAC, Rodrigues AE, Chen B, J. Phys. Chem. C., 112, 1575 (2008)
- Cheon YE, Park J, Suh MP, Chem. Commun., 5436 (2009)
- Llewellyn PL., Bourrrelly S, Serre C, Filinchuk Y, Ferey G, Angew. Chem., Int. Ed., 45, 7751 (2006)
- Couck S, Denayer JFM, Baron GV, Remy T, Gascon J, Kapteijn F, J. Am. Chem. Soc., 131(18), 6326 (2009)
- Comotti A, Bracco S, Sozzani P, Horike S, Matsuda R, Chen J, Takata M, Kubota Y, Kitagawa S, J. Am. Chem. Soc., 130(41), 13664 (2008)
- Demessence A, D'Alessandro DM, Foo ML, Long JR, J. Am. Chem. Soc., 131(25), 8784 (2009)
- Banerjee R, Furukawa H, Britt D, Knobler C, O'Keeffe M, Yaghi OM, J. Am. Chem. Soc., 131(11), 3875 (2009)
- Sircar S, Ind. Eng. Chem. Res., 45(16), 5435 (2006)
- Chae HK, Siberio-Perez DY, Kim J, Go YB, Eddaoudi M, Matzger AJ, O’'Keeffe M, Yaghi OM, Nature., 427, 523 (2004)
- Yong Z, Mata VG, Rodrigues AE, Adsorption., 7, 41 (2001)
- Siriwardane RV, Shen MS, Fisher EP, Poston JA, Energy Fuels, 15(2), 279 (2001)
- McEwen J, Hayman JD, Yazaydin AO, Chem. Phys., 412, 72 (2013)
- Jadhav PD, Chatti RV, Biniwale RB, Labhsetwar NK, Devotta S, Rayalu SS, Energy Fuels, 21(6), 3555 (2007)
- Lee KB, Beaver MG, Caram HS, Sircar S, Ind. Eng. Chem. Res., 47(21), 8048 (2008)
- Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O'Keeffe M, Yaghi OM, Acc. Chem. Res., 43, 58 (2010)
- Rezaei F, Webley P, Sep. Purif. Technol., 70(3), 243 (2010)