화학공학소재연구정보센터
Clean Technology, Vol.19, No.4, 453-458, December, 2013
비산재 성분과 원소 및 산화수은의 반응특성
Reaction Characteristics of Elemental and Oxidized Mercury with Fly Ash Components
E-mail:
초록
배기가스 중에서 비산재는 수은을 산화하거나 흡착하는 능력을 지닌다. 비산재의 수은 산화 및 흡착 효율은 비산재가 가지는 특성에 따라 변하여 일정하지 않다. 본 연구는 비산재 성분과 수은의 반응특성을 이해하기 위하여 비산재 성분물질이 원소수은과 산화수은에 대해 가지는 산화 및 흡착 능력을 평가하였다. 그리고 비산재 시료의 조성에 맞게 합성한 비산재를 시험하였고, 석탄화력발전소에서 수령한 비산재 시료의 결과와 비교하였다. 원소수은에 대해서는 미세탄소분말, 산화구리, 산화철이 높은 산화 또는 흡착효율을 보였고, 염화수은에 대해서는 미세탄소분말, 산화칼슘, 산화구리, 산화마그네슘이 높은 효율을 보였다. 그리고 합성비산재는 비산재 시료와 유사한 수은 산화 및 흡착 효율을 보였다.
Fly ash has capacity to oxidize or adsorb mercury in a flue gas. Mercury oxidation and adsorption efficiencies of fly ash vary depending on the properties of fly ash. This study was designed to understand reaction characteristics of mercury with fly ash components. The fly ash components were tested to determine their oxidation and adsorption capabilities for elemental mercury and oxidized mercury. A sample was synthesized with fly ash components and tested. The test results were compared with those of the fly ash sample obtained from a coal-fired power plant. Fe2O3, CuO and carbon black showed higher oxidation or adsorption efficiency for elemental mercury while CaO, MgO, CuO and carbon black showed higher adsorption efficiency for mercury chloride. In addition, the synthesized sample showed comparable mercury oxidation and adsorption efficiencies to the fly ash sample.
  1. Kilgroe JD, Sedman CB, Srivastava RK, Ryan JV, Lee CW, Thorneloe SA, “Control of Mercury Emissions from Coal-fired Electric Utility Boilers: Interim Report,” U.S. Environmental Protection Agency, National Risk Management Research Laboratory (2001)
  2. Gibb WH, Clarke F, Mehta AK, Fuel Process. Technol., 65-66, 365 (2000)
  3. Rallo M, Lopez-Anton MA, Perry R, Maroto-Valer MM, Fuel, 89(8), 2157 (2010)
  4. Kang SW, Shim SH, Jeong SH, Jung JH, Lee SS, J. Korea Soc. Atmos. Environ., 28, 182 (2012)
  5. Kolker A, Senior CL, Quick JC, Appl. Geochem., 21, 1821 (2006)
  6. Serre SD, Silcox GD, Ind. Eng. Chem. Res., 39(6), 1723 (2000)
  7. Dunham GE, DeWall RA, Senior CL, Fuel Process. Technol., 82(2-3), 197 (2003)
  8. Norton GA, Yang HQ, Brown RC, Laudal DL, Dunham GE, Erjavec J, Fuel, 82(2), 107 (2003)
  9. Ghorishi SB, Lee CW, Jozewicz WS, Kilgroe JD, Environ. Eng. Sci., 22, 221 (2005)
  10. Bhardwaj R, Chen X, Vidic RD, J. Air Waste Manage. Assoc., 59, 1331 (2009)
  11. Baltrus JP, Wells AW, Fauth DJ, Diehl JR, White CM, Energy Fuels, 15(2), 455 (2001)