화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.1, 1-8, January, 2014
우레탄 아크릴 코팅 소재의 표면 색상 및 모폴로지가 긁힘 거동에 미치는 영향
Effects of Surface Color and Morphology on the Mar Behaviors of Urethane-Acrylate Coatings
E-mail:
초록
표면 색상과 모폴로지가 우레탄-아크릴 코팅 소재 표면의 긁힘 거동에 미치는 영향을 조사하였다. 동일한 실험 조건에서, 흰색, 적색, 검정색 시험편의 순으로 긁힘 저항성이 우수함을 보였다. 이런 결과는 명암 대비효과를 가지고 설명될 수 있다. 즉 검정색 시험편의 경우, 긁힘이 생성된 손상 영역은 빛을 확산 반사하여 백화현상이 일어나고, 그 결과 주변 검정색과 대비되어 더욱 뚜렷이 구별된다. 반면, 흰색 시험편은 주변 흰색이 보호색 역할을 하여, 긁힘 손상 부위를 인지하기 어렵게 된다. 광택도가 높은 시험편 표면일수록 에틸렌, 실리카 성분 및 카르보닐 그룹의 증가를 관찰할 수 있었다. 실리카 입자에 의한 표면 강성의 증가와 산화에 의한 카르보닐기 생성은 긁힘 저항성의 증가를 유도하고, 폴리에틸렌 왁스의 증가는 표면을 매끄럽게 하여 광택도의 향상에 기여한 것으로 보인다. 연구 결과를 바탕으로 우레탄-아크릴 코팅 소재의 긁힘 저항성을 향상시킬 수 있는 기술적 접근 방법에 대해 토의하였다.
The effects of surface color and morphology on the mar behaviors of urethane-acrylate coated surfaces were examined. The superiority of mar resistance was observed in the order of white, red and black-colored samples. This can be explained by a contrast effect. In other words, in case of black colored sample, it takes place the defuse reflection of the incident light on the damaged region where mar damage exerts, leading to whitening phenomenon. Therefore, the damaged region is easily recognized by contrasting the black background. On the other hand, it is difficult for the whitecolored sample to perceive the mar-damaged area by the white background acting as protecting coloration. As the gloss of urethane-acrylate coated surface increases, it is observed that there is an increase in the number of carbonyl (-C=O) function group, amount of ethylene and silica. The enhancements of surface rigidity by adding the silica particles and formation of carbonyl function groups by the surface oxidation lead to the increase in mar resistance, while the increase of polyethylene wax is responsible for the improved gloss and smooth-faced surface. Based on the above findings, technical approaches leading the improvement of mar resistance of the urethane-acrylate coated surface are discussed.
  1. Jung WY, Weon JI, Polym.(Korea), 37(4), 455 (2013)
  2. Choe JH, J. Korean Inst. Ind. Eng., 39, 73 (2013)
  3. Kim KS, Lee EO, Korean Society of Basic Design & Art, 12, 27 (2011)
  4. Weon JI, Macromol. Res., 20(9), 1002 (2012)
  5. Weon JI, Cho IH, Song SY, Lee JB, Choi KY, Lee SG, Lee JH, Macromol. Res., 18(6), 610 (2010)
  6. Browning RL, Hossain MM, Li J, Sue HJ, Tribol. Int., 44, 1024 (2011)
  7. Seo TW, Weon JI, J. Mater. Sci., 47(5), 2234 (2012)
  8. Kwak S, Noh DI, Chun HJ, Lim YM, Nho YC, Jang JW, Shim YB, Macromol. Res., 17(8), 603 (2009)
  9. Baek KW, Lee SG, Lee JH, Choi KY, Weon JI, Polym.(Korea), 33(4), 273 (2009)
  10. American Society for Testing and Materials, Standard Test Method for Evaluation of Scratch Resistance of Polymeric Coatings and Plastics Using an Instrumented Scratch Machine, ASTM D7027 (2005)
  11. International Standard Organization, Plastics, Determination of Scratch Properties, ISO 19252 (2008)
  12. Jo EK, Hong SS, J. Digital Design, 35, 395 (2012)
  13. Weon JI, Song SY, Choi KY, Lee SG, Lee JH, J. Mater. Sci., 45(10), 2649 (2010)
  14. Liu P, Browning RL, Sue HJ, Li J, Jones S, Polym. Test., 30, 633 (2011)
  15. Jiang H, Browning RL, Hossain MM, Sue HJ, Fujiwara M, Appl. Surf. Sci., 256, 4056 (2009)
  16. General Motors World Spec, Scratch and Mar Resistance, GMW 14688 (2007)
  17. Weon JI, Lee SY, Polym.(Korea), 36(4), 461 (2012)
  18. Tracton AA, Coatings Technology Handbook, 3rd Edition, CRC Press, United States (2005)
  19. Weon JI, Polym.(Korea), 31(2), 123 (2007)