화학공학소재연구정보센터
Polymer(Korea), Vol.38, No.1, 98-102, January, 2014
전기분사법에 의한 다공성 실크 피브로인 미세입자의 제조
Fabrication of Porous Silk Fibroin Microparticles by Electrohydrodynamic Spraying
E-mail:
초록
실크 피브로인은 뛰어난 생체적합성 및 생분해성으로 인해 의료용 천연고분자소재로 각광받고 있으며 다양한 형태로 제조되어 이용되고 있다. 전기분사법은 고분자 용액에 고전압을 적용하여 미세입자를 제조하는 방법으로 진행과정이 간단하고 첨가제를 필요로 하지 않는다는 장점을 지닌다. 본 연구에서는 실크 피브로인 다공성 미세입자를 제조하기 위하여 폴리(에틸렌 글리콜)(PEG)을 첨가한 후 전기분사를 실시하였다. PEG를 첨가함으로써 분사원액의 전도도는 감소하였고 점도는 증가하였다. 제조된 미세입자의 크기는 PEG 첨가에 따라 감소하였는데 이는 분사용액의 전도도 및 점도보다는 피브로인과 PEG간의 상분리에 의한 효과인 것으로 보인다. 제조된 실크 피브로인 미세입자를 물에 침지한 결과 PEG가 제거되었으며 최종적으로 실크 피브로인 다공성 입자를 제조할 수 있었다. 제조된 다공성 실크 피브로인 미세입자는 약물전달체 및 조직공학용 세포전달체로 이용가능성이 높을 것으로 기대된다.
Nowadays, silk fibroin receives a lot of attention as novel natural biomaterials due to its excellent biocompatibility and biodegradability. Electrohydrodynamic spraying (EHDS) is one of the method for the preparation of micro or nanoparticles by applying high voltage to the polymer solution. In this research, we fabricated silk fibroin porous microparticles by electrohydrodynamic spraying. Poly(ethylene glycol) (PEG) was added to the fibroin solution to give pores to silk fibroin microparticles. By the addition of PEG, the microparticle size was decreased despite of the decrease in conductivity and the increase of viscosity of the spraying solution. It seems that the immiscibility of silk fibroin and PEG affected much more to the microparticle size than the conductivity and viscosity. Immersing the as-sprayed microparticles into the water removed the phase-separated PEG, and finally, porous silk fibroin microparticles were prepared. The porous silk fibroin microparticles are expected to be applied as drug carriers in drug delivery or cell carriers in tissue engineering.
  1. Cao Y, Wang BC, Int. J. Mol. Sci., 10(4), 1514 (2009)
  2. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL, Biomaterials, 24, 401 (2003)
  3. Hardy JG, Romer LM, Scheibel TR, Polymer, 49(20), 4309 (2008)
  4. Kim HL, Yoo H, Park HJ, Kim YG, Lee D, Kang YS, Khang G, Polym.(Korea), 35(1), 7 (2011)
  5. Cho SY, Park HH, Jin HJ, Polym.(Korea), 36(5), 651 (2012)
  6. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH, Biomaterials, 25, 1289 (2004)
  7. Wenk E, Wandrey AJ, Merkle HP, Meinel L, J. Control. Release, 132, 26 (2008)
  8. Srisuwan Y, Srihanam P, Baimark Y, J. Macromol. Sci. Part A-Pure Appl. Chem., 46, 521 (2009)
  9. Yeo JH, Lee KG, Lee YW, Kim SY, Eur. Polym. J., 39, 1195 (2003)
  10. Cao Z, Chen X, Yao J, Huang L, Shao Z, Soft Matter, 3, 910 (2007)
  11. Bock N, Dargaville TR, Woodruff MA, Prog. Polym. Sci., 37, 1510 (2012)
  12. Chakraborty S, Liao IC, Adler A, Leong KW, Adv. Drug Deliv. Rev., 61, 1043 (2009)
  13. Jin HJ, Park J, Valluzzi R, Cebe P, Kaplan DL, Biomacromolecules, 5(3), 711 (2004)
  14. Lawrence BD, Marchant JK, Pindrus MA, Omenetto FG, Kaplan DL, Biomaterials, 30, 1299 (2009)
  15. Oh H, Lee JY, Kim A, Ki CS, Kim JW, Park YH, Lee KH, Fiber. Polym., 8, 470 (2007)
  16. Cuniberti C, Ferrando R, Polymer, 13, 379 (1972)
  17. Hammouda B, Ho DL, Kline S, Macromolecules, 37(18), 6932 (2004)
  18. Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL, Biomacromolecules, 3(6), 1233 (2002)
  19. Chen X, Knight DP, Shao ZZ, Vollrath F, Polymer, 42(25), 9969 (2001)
  20. Duan B, Dong C, Yuan X, Yao K, J. Biomater. Sci.-Polym. Ed., 15, 797 (2004)