Korean Journal of Chemical Engineering, Vol.31, No.2, 211-217, February, 2014
Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid
E-mail:
Three types of TiO2 were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO2 was successfully obtained at 100 ℃. The results indicated that amorphous TiO2 achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and
dodecanethiol (RSH) in model oil was studied at room temperature (30 ℃) with three catalysts. The system contained amorphous TiO2, H2O2, and [Bmim]BF4 ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H2O2 and sulfur (O/S) was only 2 : 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO2 could reach 96.6%, which was apparently superior to a system with anatase TiO2 (23.6%) or with anatase - rutile TiO2 (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity.
- Ko NH, Lee JS, Huh ES, Lee H, Jung KD, Kim HS, Cheong M, Energy Fuels, 22(3), 1687 (2008)
- Lin F, Wang DE, Jiang ZX, Ma Y, Li J, Li RG, Li C, Energy Environ. Sci., 5, 6400 (2012)
- Li FT, Liu Y, Sun ZM, Zhao Y, Liu RH, Chen LJ, Zhao DS, Catal. Sci. Technol., 2, 1455 (2012)
- Lokhande CD, Lee EH, Jung KD, Joo OS, J. Mater. Sci., 39(8), 2915 (2004)
- Shiraishi Y, Hirai T, Komasawa I, J. Chem. Eng. Jpn., 35(12), 1305 (2002)
- Thu HTV, Thu TTN, Phuong HTN, Do MH, Au HT, Nguyen TB, Nguyen DL, Park JS, Mater. Res. Bull., 47(2), 308 (2012)
- Li FT, Liu RH, Sun ZM, China Petrol. Process. Petrochem. Technol., 53 (2008)
- RE Demaray, HM Zhang, M Narasimhan, V Milonopoulou, US Patent, 20,040,259,305 A1 (2004)
- Zhang ZY, Maggard PA, J. Photochem. Photobiol. A, 186, 8 (2007)
- Senevirathna MKI, Pitigala PKDDP, Tennakone K, J. Photochem. Photobiol. A: Chem., 171, 257 (2005)
- Zhu WSA, Li HM, Gu QQ, Wu PW, Zhu GP, Yan YS, Chen GY, J. Mol. Catal. A-Chem., 336(1-2), 16 (2011)
- Ding YX, Zhu WS, Li HM, Jiang W, Zhang M, Duan YQ, Chang YH, Green Chem., 13, 1210 (2011)
- Zhu WS, Zhang JT, Li HM, Chao YH, Jiang W, Yin S, Liu H, RSC Adv., 2, 658 (2012)
- Cai TJ, Liao YC, Peng ZS, Long YF, Wei ZY, Deng Q, J. Environ. Sci., 21, 997 (2009)
- Tayade RJ, Surolia PK, Kulkarni RG, Jasra RV, Sci. Technol. Adv. Mater., 8, 455 (2007)
- Chen YF, Lee CY, Yeng MY, Chiu HT, J. Cryst. Growth, 247(3-4), 363 (2003)
- Kumar PM, Badrinarayanan S, Sastry M, Thin Solid Films, 358(1-2), 122 (2000)
- Davidson RS, Morrison CL, Abraham J, J. Photochem., 24, 27 (1984)
- Zou J, Gao JC, Xie FY, J. Alloy. Compd., 497, 420 (2010)
- Yoshitake H, Abe D, Micropor. Mesopor. Mater., 119, 267 (2009)
- McCafferty E, Wightman JP, Surf. Interface Anal., 26, 549 (1998)
- Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, Park DR, Suzuki Y, Koyano K, Tatsumi T, Catal. Today, 44(1-4), 327 (1998)
- Muruganandham M, Swaminathan M, J. Hazard. Mater., 135(1-3), 78 (2006)
- Matsuzawa S, Tanaka J, Sato S, Ibusuki T, J. Photochem. Photobiol. A: Chem., 149, 183 (2002)
- Zhao DS, Liu R, Wang JL, Liu BY, Energy Fuels, 22(2), 1100 (2008)
- Zhang J, Zhao DS, Yang LY, Li YB, Chem. Eng. J., 156(3), 528 (2010)
- Xu JH, Zhao S, Chen W, Wang M, Song YF, Chem. Eur. J., 18, 4775 (2012)
- Otsuki S, Nonaka T, Takashima N, Qian WH, Ishihara A, Imai T, Kabe T, Energy Fuels, 14(6), 1232 (2000)
- Zhu WS, Li HM, Jiang X, Yan YS, Lu JD, He LN, Xia JX, Green Chem., 10, 641 (2008)