화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.2, 268-275, February, 2014
Preparation and electrochemical behaviour of biomass based porous carbons as electrodes for supercapacitors - a comparative investigation
E-mail:
We compared the relationship of the behavior and performance of sugarcane baggase and rice straw as supercapacitor electrodes. X-ray diffraction revealed the evolution of crystallites of carbon and silica during activation at higher temperature. The morphology of the carbon samples was determined by SEM. The surface area, pore volume, and pore size distribution of carbon composites were measured. The electrochemical responses were studied by using cyclic voltammetry experiment at 25 ℃ in a three-electrode configuration. The specific capacitance of the sugarcane bagasse carbon electrodes was in the range 92-340 F/g, whereas for rice straw, it was found to be 56-112 F/g at scan rates of 2-3 mV/s. The sugarcane bagasse carbon exhibited better performance than rice straw carbon using H2SO4 as the electrolyte. However, the results clearly show that lignocellulosic wastes possess a new biomass source of carbonaceous materials for high-performance supercapacitors.
  1. Miller JR, Simon P, Science, 321, 651 (2008)
  2. Simon P, Gogotsi Y, Nat. Mater., 7(11), 845 (2008)
  3. Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
  4. Vasile Obreja VN, Physica E: Low. Dimens. Syst. Nanostruct., 40, 2596 (2008)
  5. Pessoa JA, de Manchilha IM, Sato S, J. Ind. Microbio. Biotechnol., 18, 360 (1997)
  6. Robinson P, University of California Davis, Personal Communication (2006)
  7. Tsai WT, Chang CY, Lee SL, Carbon, 35, 1198 (1997)
  8. Yanping G, Rockstraw DA, Micropor. Mesopor. Mater., 100, 12 (2007)
  9. Hayashi J, Toshihide H, Isao T, Katsuhiko M, Fard NA, Carbon, 40, 2381 (2002)
  10. Lim WC, Srinivasakannan C, Balasubramanian N, J. Anal. Appl. Pyrol., 88, 181 (2010)
  11. Rufford TE, Hulicova-Jurcakova D, Khosla K, Zhu ZH, Lu GQ, J. Power Sources, 195(3), 912 (2010)
  12. Chun-Hisen H, Ruey AD, Micropor. Mesopor. Mater, 147, 47 (2012)
  13. Zhang F, Wang KX, Li GD, Chen JS, Electrochem. Commun., 11, 130 (2009)
  14. Salame II, Bandosz TJ, Ind. Eng. Chem. Res., 39(2), 301 (2000)
  15. Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press, London (1982)
  16. Pastor AC, Rodriguez R, Marsh H, Martinez MA, Carbon, 37, 1275 (1999)
  17. Liao CP, Wu CZ, Yanyongjie, Huang HT, Biomass Bioenerg., 27(2), 119 (2004)
  18. Van Soest PJ, Anim. Feed. Sci. Technol., 130, 137 (2006)
  19. Raveendran K, Anuraddha G, Kartick C, Khilar K, Fuel, 74, 1812 (1995)
  20. Yalcin N, Sevnic V, Ceram. Int., 27, 219 (2001)
  21. Chang HY, Yun HP, Chong RP, Carbon, 39, 559 (2001)
  22. Sing KSW, Pure. Appl. Chem., 54, 2201 (1982)
  23. Guo YP, Yang SF, Yu KF, Zhao JZ, Wang ZC, Xu HD, Mater. Chem. Phys., 74(3), 320 (2002)
  24. Fierro V, Muniz G, Basta AH, El-Saied H, Celzard A, J. Hazard. Mater., 181(1-3), 27 (2010)
  25. Zhu Z, Hu Y, Jiang H, Li C, J. Power Sources, 246, 402 (2014)
  26. Jeong E, Jung MJ, Lee YK, J. Fluorine Chem., 150, 98 (2013)
  27. Tsai WT, Chang CY, Lin MC, Chien SF, Sun HF, Hsieh MF, Chemosphere, 45, 51 (2001)
  28. Adinaveen T, Kennedy LJ, Vijaya JJ, Sekaran G, J. Ind. Eng. Chem., 19(5), 1470 (2013)
  29. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei B, J. Phys. Chem. C, 111, 7527 (2007)
  30. Si WJ, Wu XZ, Xing W, Zhou J, Zhuo SP, J. Inorg. Mater., 26, 107 (2011)
  31. Wu XZ, Zhou J, Xing W, Zhuo SP, J. North Uni. China, 33, 179 (2012)