화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.1, 79-84, January, 2014
Poly(amide-co-imide)-poly(trimellitic anhydride chloride-co-4,4′-methylenedianiline) nonwoven/sulfonated poly(arylene ether sulfone) composite membrane for proton exchange membrane fuel cells
E-mail:
Poly(amide-co-imide)-poly(trimellitic anhydride chloride-co-4,4′-methylenedianiline) (PAI-PTM) blends were prepared for fabricating nonwoven composite membranes by electrospinning method. The characteristics of the membranes were investigated by scanning electron microscopy (SEM), porometer, and universal tensile machine (UTM). Sulfonated poly(arylene ether sulfone) (SPAES) copolymer was synthesized with 50 degrees of sulfonation as a hydrocarbon-based ionomer for proton exchange membrane fuel cells (PEMFCs). The novel composite membrane was fabricated by impregnating SPAES copolymer into the PAI-PTM nonwoven membrane. The PAI-PTM nonwoven membrane exhibited high porosity and adequate mechanical properties, which could improve the dimensional stability (26 vol% decrease) from the swelling of SPAES copolymer in water. For the single cell test, the composite membrane showed comparable performance (1.07 A/cm2 at 0.6 V) to that of Nafion 212 (1.02 A/cm2 at 0.6 V) and outstanding durability in the open circuit voltage (OCV) holding test.
  1. Zhang LW, Chae SR, Hendren Z, Park JS, Wiesner MR, Chem. Eng. J., 204, 87 (2012)
  2. Yu DM, Yoon YJ, Kim TH, Lee JY, Hong YT, Solid State Ion., 233, 55 (2013)
  3. Sohn JY, Sung HJ, Shin J, Ko BS, Song JM, Nho YC, Macromol. Res., 20(9), 912 (2012)
  4. Kim HK, Zhang M, Yuan XP, Lvov SN, Chung TCM, Macromolecules, 45(5), 2460 (2012)
  5. Park CH, Lee CH, Guiver MD, Lee YM, Prog. Polym. Sci, 36, 1443 (2011)
  6. Liu C, Khan SB, Lee M, Kim KI, Akhtar K, Han H, Asiri AM, Macromol. Res., 21(1), 35 (2013)
  7. Chen Y, Rowlett JR, Lee CH, Lane OR, VanHouten DJ, Zhang MQ, Moore RB, McGrath JE, J. Polym. Sci. A: Polym. Chem., 51(10), 2301 (2013)
  8. Park J, Kim TH, Kim HJ, Choi JH, Hong YT, Int. J. Hydrog. Energy, 37, 2063 (2012)
  9. Oh SY, Park JY, Yu DM, Hong SK, Hong YT, Macromol. Res., 20(2), 121 (2012)
  10. Bi C, Zhang HM, Xiao SH, Zhang Y, Mai ZS, Li XF, J. Membr. Sci., 376(1-2), 170 (2011)
  11. Dai H, Zhang HM, Zhong HX, Li XF, Xiao SH, Mai ZS, Int. J. Hydrog. Energy, 35(9), 4209 (2010)
  12. Yu DM, Yoon K, Yoon YJ, Kim TH, Lee JY, Hong YT, Macromol. Chem. Phys., 213, 839 (2012)
  13. Seol JH, Won JH, Lee MS, Yoon KS, Hong YT, Lee SY, J. Mater. Chem., 22, 1634 (2012)
  14. Lim JM, Won JH, Lee HJ, Hong YT, Lee MS, Ko CH, Lee SY, J. Mater. Chem., 22, 18550 (2012)
  15. Rajesh S, Maheswari P, Senthilkumar S, Jayalakshmi A, Mohan D, Chem. Eng. J., 171(1), 33 (2011)
  16. Sarkar A, More AS, Wadgaonkar PP, Shin GJ, Jung JC, J. Appl. Polym. Sci., 105, 1793 (2006)
  17. Heo GY, Hong YT, Park SJ, Macromol. Res., 20(5), 503 (2012)
  18. Bajaj B, Lee S, Yoon S, Park B, Kim B, Park B, Lee J, J. Mater. Chem., 22, 2975 (2012)
  19. Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE, J. Membr. Sci., 197(1-2), 231 (2002)
  20. Wiles KB, de Diego CM, de Abajo J, McGrath JE, J. Membr. Sci., 294(1-2), 22 (2007)
  21. Ko HN, Yu DM, Choi JH, Kim HJ, Hong YT, J. Membr. Sci., 390, 226 (2012)
  22. Seol JH, Won JH, Yoon KS, Hong YT, Lee SY, Int. J. Hydrog. Energy, 37(7), 6189 (2012)
  23. Ralph TR, Barnwell DE, Bouwman PJ, Hodgkinson AJ, Petch MI, Pollington M, J. Electrochem. Soc., 155(4), B411 (2008)
  24. Ballengee JB, Pintauro PN, Macromolecules, 44(18), 7307 (2011)
  25. Sethuraman VA, Weidner JW, Haug AT, Protsailo LV, J. Electrochem. Soc., 155(2), B119 (2008)