화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.1, 1-13, February, 2014
다음세대 리튬이온 배터리용 고에너지 밀도 게르마늄 음극
High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries
E-mail:
초록
리튬이온 배터리는 전기화학 에너지 저장 및 변환 기기에서 가장 높은 수준의 기술력을 기반으로 개발된 셀이며, 여전히 높은 에너지 밀도와 충방전 안정성이 높아서 가장 매력적인 배터리의 부류로서 평가받고 있다. 최근 급속한 대형 에너지 저장 응용시스템의 개발이 이루어지면서 기존의 그래파이트 전극을 대체하기 위한 새로운 음극물질의 개발이 요구되고 있다. 게르마늄과 실리콘은 이론적 에너지 용량이 높아서 다음 세대 리튬 배터리의 적합한 물질로 평가받고 있으며, 특히 게르마늄은 실리콘에 비해 충방전에 따른 부피변화가 상대적으로 적고, 리튬이온의 동력학 거동이 용이하며, 높은 전기전도도 특성이 있다. 본 총설에서는 우선 리튬이온 배터리의 기본 원리를 소개하고, 배터리 특성을 최대한 발휘할 수 있는 이상적인 음극 물질의 구조와 특성을 살펴보고자 한다. 다음 세대 음극물질로 고려되고 있는 게르마늄 복합체가 어떻게 현재의 리튬 배터리를 개선할 수 있을지를 논의하려고 한다. 그리고 최근 시도되고 있는 연구동향에 대한 소개를 끝으로 리튬이온 배터리의 고에너지 밀도화에 대한 참고문헌이 될 수 있기를 바란다.
Lithium ion batteries (LIBs) are the state-of-the-art technology among electrochemical energy storage and conversion cells, and are still considered the most attractive class of battery in the future due to their high specific energy density, high efficiency, and long cycle life. Rapid development of power-hungry commercial electronics and large-scale energy storage applications (e.g. off-peak electrical energy storage), however, requires novel anode materials that have higher energy densities to replace conventional graphite electrodes. Germanium (Ge) and silicon (Si) are thought to be ideal prospect candidates for next generation LIB anodes due to their extremely high theoretical energy capacities. For instance, Ge offers relatively lower volume change during cycling, better Li insertion/extraction kinetics, and higher electronic conductivity than Si. In this focused review, we briefly describe the basic concepts of LIBs and then look at the characteristics of ideal anode materials that can provide greatly improved electrochemical performance, including high capacity, better cycling behavior, and rate capability. We then discuss how, in the future, Ge anode materials (Ge and Ge oxides, Ge-carbon composites, and other Ge-based composites) could increase the capacity of today’s Li batteries. In recent years, considerable efforts have been made to fulfill the requirements of excellent anode materials, especially using these materials at the nanoscale. This article shall serve as a handy reference, as well as starting point, for future research related to high capacity LIB anodes, especially based on semiconductor Ge and Si.
  1. Fairhall AW, Nature., 245, 20 (1973)
  2. Rosenzweig C, Parry ML, Nature, 367(6459), 133 (1994)
  3. Sumaila UR, Cheung WWL, Lam VWY, Pauly D, Herrick S, Nat. Clim. Chang., 1, 449 (2011)
  4. United Nations World Commission on Environment and Development, Our common future [Brundtland Report], Oxford University Press (1987)
  5. Boyle G, Renewable Energy: Power for a Sustainable Future, 3rd ed., Oxford University Press, USA (2012)
  6. Dunn B, Kamath H, Tarascon JM, Science, 334(6058), 928 (2011)
  7. Winter M, Brodd RJ, Chem. Rev., 104(10), 4245 (2004)
  8. Tarascon JM, Armand M, Nature., 414, 359 (2001)
  9. Goodenough JB, Park KS, J. Am. Chem. Soc., 135(4), 1167 (2013)
  10. Wu XL, Guo YG, Wan LJ, Chem.-Asian J., 8, 1948 (2013)
  11. Lee KT, Cho J, Nano Today, 6(1), 28 (2011)
  12. Jiang J, Li Y, Liu J, Huang X, Nanoscale., 3, 45 (2011)
  13. Teki R, Datta MK, Krishnan R, Parker TC, Lu TM, Kumta PN, Koratkar N, Small., 5, 2236 (2009)
  14. Zhao N, Fu L, Yang L, Zhang T, Wang G, Wu Y, van Ree T, Pure Appl. Chem., 80, 2283 (2008)
  15. Nitta N, Yushin G, Part. Part. Syst. Charact., High-capacity anode materials for lithiumion batteries: Choice of elements and structures for active particles, DOI: 10.1002/ppsc.201300231.
  16. Reddy MV, Rao GVS, Chowdari BVR, Chem. Rev., 113(7), 5364 (2013)
  17. Bogard TD, Chockla AM, Korgel BA, Curr. Opin.Chem. Eng., 2, 286 (2013)
  18. Zhang Q, Uchaker E, Candelaria SL, Cao G, Chem. Soc. Rev., 42, 3127 (2013)
  19. Ikeda H, Saito T, Tamura H, in Proc. Manganese Dioxide Symp. (eds Kozawa A, Brodd RH), IC sample office, Cleveland, OH, 1 (1975)
  20. Whittingham MS, Chalcogenide battery, US Patent 4009052.
  21. Rao BML, Francis RW, Christopher HA, J. Electrochem. Soc., 124, 1490 (1977)
  22. Steele BCH, Fast ion transport in solids (ed. W. Van Gool),North-Holland Amsterdam (1973)
  23. Yoshino A, Angew. Chem. Int.Ed., 51, 5798 (2012)
  24. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB, Mater. Res. Bull., 15, 783 (1980)
  25. Thackeray MM, David WIF, Bruce PG, Goodenough JB, Mater. Res.Bull., 18, 461 (1983)
  26. Goodenough JB, Mizushima K, Wiseman PJ, Electrochemical cell and method of making ion conductors for said cell, EP0017400B1 (1984)
  27. Murphy DW, DiSalvo FJ, Carides JN, Waszczak JV, Mater. Res. Bull., 13, 1395 (1978)
  28. Lazzari M, Scrosati B, J. Electrochem. Soc., 127, 773 (1980)
  29. van Schalkwijk W, Scrosati B, Advances in Lithium-ion batteries, Kluwer Academic/Plenum, Boston, USA (2004)
  30. Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG, Angew. Chem. Int. Ed., 51, 9994 (2012)
  31. Graetz J, Ahn CC, Yazami R, Fultz B, J. Electrochem. Soc., 151(5), A698 (2004)
  32. Yoon S, Park CM, Sohn HJ, Electrochem. Solid State Lett., 11(4), A42 (2008)
  33. Baggetto L, Notten PHL, J. Electrochem. Soc., 156(3), A169 (2009)
  34. Liu XH, Liu Y, Kushima A, Zhang S, Zhu T, Li J, Huang JY, Adv. Energy Mater., 2, 722 (2012)
  35. Liu XH, Huang S, Picraux T, Li J, Zhu T, Huang JY, NanoLett., 11, 3991 (2011)
  36. Liu XH, Huang JY, Energy Environ. Sci., 4, 3844 (2011)
  37. Liu XH, Zheng H, Zhong L, Huang S, Karki K, Zhang LQ, Liu Y, Kushima A, Liang WT, Wang JW, Cho JH, Eds, NanoLett., 11, 3312 (2011)
  38. Liu XH, Zhang LQ, Zhong L, Liu Y, Zheng H, Wang JW, Cho JH, Dayeh SA, Picraux ST, Sullivan JP, Mao SX, Ye ZZ, Huang JY, NanoLett., 11, 2251 (2011)
  39. Liu XH, Zhong L, Zhang LQ, Kushima A, Mao SX, Li J, Ye ZZ, Sullivan JP, Huang JY, Appl. Phys. Lett., 98, 183107 (2011)
  40. Obrovac MN, Christensen L, Electrochem. Solid State Lett., 7(5), A93 (2004)
  41. Hatchard TD, Dahn JR, J. Electrochem. Soc., 151(6), A838 (2004)
  42. Baggetto L, Hensen EJM, Notten PHL, Electrochim. Acta, 55(23), 7074 (2010)
  43. Laforge B, Levan-Jodin L, Salot R, Billard A, J. Electrochem. Soc., 155(2), A181 (2008)
  44. Baggetto L, Oudenhoven JFM, van Dongen T, Klootwijk JH, Mulder M, Niessen RAH, de Croon MHJM, Notten PHL, J. Power Sources, 189(1), 402 (2009)
  45. Park MH, Cho Y, Kim K, Kim J, Liu M, Cho J, Angew. Chem. Int. Ed., 50, 9647 (2011)
  46. Liang W, Yang H, Fan F, Liu Y, Liu XH, Huang JY, Zhu T, Zhang S, ACS Nano., 7, 3427 (2013)
  47. Liu XH, Zhong L, Huang S, Mao X, Zhu T, Huang JY, ACS Nano., 6, 1522 (2012)
  48. Lee H, Kim MG, Choi CH, Sun YK, Yoon CS, Cho J, J. Phys. Chem. B, 109(44), 20719 (2005)
  49. Klavetter KC, Wood SM, Lin YM, Snider JL, Davy NC, Chockla AM, Romanovicz DK, Korgel BA, Lee JW, Heller A, Mullins CB, J. Power Sources., 238, 123 (2013)
  50. Nakai H, Kubota T, Kita A, Kawashima A, J. Electrochem. Soc., 158(7), A798 (2011)
  51. Etacheri V, Geiger U, Gofer Y, Roberts GA, Stefan IC, Fasching R, Aurbach D, Langmuir, 28(14), 6175 (2012)
  52. Lin YM, Klavetter KC, Heller A, Buddie Mullins C, J. Phys. Chem. Lett., 4, 999 (2013)
  53. Son Y, Park M, Son Y, Lee JS, Jang JH, Kim Y, Cho J, NanoLett., DOI:10.1021/nl404466v.
  54. Cho YJ, Im HS, Kim HS, Myung Y, Back SH, Lim YR, Jung CS, Jang DM, Park J, Cha EH, Cho WI, Shojaei F, Kang HS, ACS Nano., 7, 9075 (2013)
  55. Rudawski NG, Darby BL, Yates BR, Jones KS, Elliman RG, Volinsky AA, Appl. Phys. Lett., 100, 083111 (2012)
  56. Rudawski NG, Yates BR, Holzworth MR, Jones KS, Elliman RG, Volinsky AA, J. Power Sources., 223, 336 (2013)
  57. Park MH, Kim K, Kim J, Cho J, Adv. Mater., 22(3), 415 (2010)
  58. Yang LC, Gao QS, Li L, Tang Y, Wu YP, Electrochem. Commun., 12, 418 (2010)
  59. Wang XL, Han WQ, Chen HY, Bai JM, Tyson TA, Yu XQ, Wang XJ, Yang XQ, J. Am. Chem. Soc., 133(51), 20692 (2011)
  60. Song T, Jeon Y, Samal M, Han H, Park H, Ha J, Yi DK, Choi JM, Chang H, Choi YM, Paik U, Energy Environ. Sci., 5, 9028 (2012)
  61. Liu X, Zhao J, Hao J, Su BL, Li Y, J. Mater. Chem. A., 1507615081, 1 (2013)
  62. Chan CK, Zhang XF, Cui Y, NanoLett., 8, 307 (2011)
  63. Chockla AM, Klavetter KC, Mullins CB, Korgel BA, ACS Appl. Mater. Interfaces., 4, 4658 (2012)
  64. Gu J, Collins SM, Carim AI, Hao X, Bartlett BM, Maldonado S, NanoLett., 12, 4617 (2012)
  65. Mullane E, Kennedy T, Geaney H, Dickinson C, Ryan KM, Chem. Mater., 25, 1816 (2013)
  66. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK, Phys. Rev. Lett., 100, 016602 (2008)
  67. Lee C, Wei X, Kysar JW, Hone J, Science., 321, 385 (2008)
  68. Cheng J, Du J, Crys. Eng. Comm., 14, 397 (2012)
  69. Ren JG, Wu QH, Tang H, Hong G, Zhang W, Lee ST, J. Mater. Chem. A., 1, 1821 (2013)
  70. Chockla AM, Panthani MG, Holmberg VC, Hessel CM, Reid DK, Bogart TD, Harris JT, Mullins CB, Korgel BA, J. Phys. Chem. C., 116, 11917 (2012)
  71. Kim CH, Im HS, Cho YJ, Jung CS, Jang DM, Myung Y, Kim HS, Back SH, Lim YR, Lee CW, Park J, J. Phys.Chem. C., 116, 26190 (2012)
  72. Lv D, Gordin ML, Yi R, Xu T, Song J, Jiang YB, Choi D, Wang D, Adv. Funct. Mater., GeOx/reduced graphene oxide composite as an anode for Li-ion batteries: Enhanced capacity via reversible utilization for Li2O along with improved rate performance, DOI: 10.1002/adfm.201301882.
  73. Li L, Seng KH, Feng C, Chen Z, Liu HK, Guo Z, J. Mater. Chem. A., 1, 7666 (2013)
  74. Chen Z, Yan Y, Xin S, Li W, Qu J, Guo WG, Song WG, J. Mater. Chem. A., 1, 11404 (2013)
  75. Wang C, Ju J, Yang Y, Tang Y, Lin J, Shi Z, Han RPS, Huang F, J. Mater.Chem. A., 1, 8897 (2013)
  76. Jin S, Li N, Cui H, Wang C, Nano Energy., 2, 1128 (2013)
  77. Yin H, Luo J, Yang P, Yin P, Nanoscale Res. Lett., 8, 422 (2013)
  78. Yuan FW, Yang HJ, Tuan HY, ACS Nano., 6, 9932 (2012)
  79. Seng KH, Park MH, Guo ZP, Liu HK, Cho J, Angew. Chem., 124, 5755 (2012)
  80. Jo G, Choi I, Ahn H, Park MJ, Chem. Commun., 48, 3987 (2012)
  81. Xue DJ, Xin S, Yan Y, Jiang KC, Yin YX, Guo YG, Wan LJ, J. Am. Chem. Soc., 134(5), 2512 (2012)
  82. Li D, Seng KH, Shi D, Chen Z, Liu HK, Guo Z, J. Mater.Chem. A., 1, 14115 (2013)
  83. Seng KH, Park MH, Guo ZP, Liu HK, Cho J, NanoLett., 13, 1230 (2013)
  84. Tan LP, Li Z, Tan HT, Zhu J, Rui X, Yan Q, Hng HH, J. Power Sources., 206, 253 (2012)
  85. Xiao Y, Cao M, Ren L, Hu C, Nanoscale., 4, 7469 (2012)
  86. DiLeo RA, Ganter MJ, Raffaelle RP, Landi BJ, J. Mater. Res., 25, 1441 (2010)
  87. DiLeo RA, Frisco S, Ganter MJ, Rogers RE, Raffaelle RP, Landi BJ, J. Phys.Chem. C., 115, 22609 (2011)
  88. DiLeo RA, Ganter MJ, Thone MN, Forney MW, Staub JW, Rogers RE, Landi BJ, Nano Energy., 2, 268 (2013)
  89. Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP, Energy Environ. Sci., 2, 638 (2009)
  90. Woo SH, Choi SJ, Park JH, Yoon WS, Hwang SW, Whang D, J. Electrochem. Soc., 160(1), A112 (2013)
  91. Li S, Chen C, Fu K, Xue L, Zhao C, Zhang S, Hu Y, Zhou L, Zhang X, Solid State Ion., 254, 17 (2014)
  92. Kim MH, Ahn SH, Park JW, J.Korean Phys. Soc., 49, 1107 (2006)
  93. Hwang CM, Park JW, Electrochim. Acta, 56(19), 6737 (2011)
  94. Hwang CM, Park JW, J. Power Sources, 196(16), 6772 (2011)
  95. Song T, Cheng H, Choi H, Lee JH, Han H, Lee DH, Yoo DS, Kwon MS, Choi JM, Doo SG, Chang H, Xiao J, Eds., ACS Nano., 6, 303 (2012)
  96. Wang J, Du N, Zhang H, Yu J, Yang D, J. Power Sources., 208, 434 (2012)
  97. Abel PR, Chockla AM, Lin YM, Holmberg VC, Harris JT, Korgel BA, Heller A, Mullins CB, ACS Nano., 7, 2249 (2013)
  98. Liu Y, Liu XH, Nguyen BM, Yoo J, Sullivan JP, Picraux ST, Huang JY, Dayeh SA, NanoLett., 13, 4876 (2013)
  99. Yu J, Du N, Zhang H, Yang D, RSC Adv., 3, 7713 (2013)
  100. Johnson Q, Smith GS, Wood D, Acta Cryst., 18, 131 (1965)
  101. Hwa Y, Park CM, Yoon S, Sohn HJ, Electrochim. Acta, 55(9), 3324 (2010)
  102. Seo I, Martin SW, Inorg. Chem., 50(6), 2143 (2011)
  103. Wang J, Du N, Zhang H, Yu J, Yang D, J. Mater. Chem., 22, 1511 (2012)
  104. Feng JK, Lai MO, Lu L, Mater. Res. Bull., 47(7), 1693 (2012)
  105. Zhao X, Wang C, Wang D, Hahn H, Fichtner M, Electrochem. Commun., 35, 116 (2013)
  106. Alcantara R, Tillard-Charbonnel M, Spina L, Belin C, Tirado JL, Electrochim. Acta, 47(7), 1115 (2002)
  107. Kim Y, Hwang H, Lawler K, Martin SW, Cho J, Electrochim. Acta, 53(15), 5058 (2008)
  108. Kim CH, Jung YS, Lee KT, Ku JH, Oh SM, Electrochim. Acta, 54(18), 4371 (2009)
  109. Hwang CM, Park JW, Thin Solid Films, 518(22), 6590 (2010)
  110. Li W, Yin YX, Xin S, Song WG, Guo YG, Energy Environ. Sci., 5, 8007 (2012)
  111. Yan CL, Xi W, Si WP, Deng JW, Schmidt OG, Adv. Mater., 25(4), 539 (2013)
  112. Cho YJ, Im HS, Myung Y, Kim CH, Kim HS, Back SH, Lim YR, Jung CS, Jang DM, Park J, Cha EH, Choo SH, Song MS, Cho WI, Chem. Commun., 49, 4661 (2013)
  113. Li W, Wang X, Liu B, Luo S, Liu Z, Hou X, Xiang Q, Chen D, Shen G, Chem.- Eur. J., 19, 8650 (2013)
  114. Fan S, Lim LY, Tay BK, Pramana SS, Rui X, Samani MK, Yan Q, Tay BK, Toney MF, Hng HH, J. Mater. Chem. A., 1, 14577 (2013)
  115. Cho YJ, Kim CH, Im HS, Myung Y, Kim HS, Back SH, Lim YR, Jung CS, Jang DM, Park J, Lim SH, Cha EH, Bae KY, Song MS, Cho WI, Phys. Chem. Chem. Phys., 15, 11691 (2013)