Applied Chemistry for Engineering, Vol.25, No.1, 20-26, February, 2014
TTAB 수용액에서 p-할로겐화 페놀유도체들의 가용화에 대한 열역학적 연구
Thermodynamic Study on the Solubilization of p-Halogenated Phenol Derivatives in TTAB Solution
E-mail:
초록
양이온성 계면활성제인 tetradecyltrimethylammonium bromide (TTAB) 수용액에서 p-할로겐화 페놀유도체들의 가용화현상을 UV/Vis 분광광도법을 이용하여 연구하였다. 가용화현상에 미치는 치환기, 첨가제 및 온도의 효과를 조사하였다. 모든 페놀유도체의 가용화에 대한 ΔG°와 ΔH° 값은 측정범위 내에서 모두 음의 값을 나타내었으며, ΔS° 값은 모두 양의 값을 나타내었다. 특히 이들 열역학 함수값들은 할로겐 치환기의 크기, 전기음성도 및 소수성에 크게 영향을 받았다. n-부탄올 첨가제는 모든 페놀유도체의 가용화를 감소시켰으며, NaCl 첨가제는 오히려 가용화를 촉진시켰다. 이런 결과들로부터 페놀유도체들은 치환기의 성질에 따라 미셀 내에서 가용화되는 위치가 서로 다름을 알 수 있었다.
The interaction of p-halogenated phenol derivatives with the micellar system of tetradecyltrimethylammonium bromide (TTAB) was studied by the UV/Vis spectrophotometric method. Effects of substituents, additives, and temperatures on the solubilization of phenol derivatives have been measured. The results show that all the values of ΔG° and ΔH° were negative and the values of ΔS° were positive for all phenol derivatives within the measured temperature range. The calculated thermodynamic parameters depended on the size, the electro-negativity, and the hydrophobic property of halogen substituents. The addition of n-butanol results in the decrement in tthe Ks values and the addition of NaCl caused the increment in the Ks values for all the phenol derivatives. From these changes we can postulate that the solubilization sites of the phenol derivatives in the micelle depend severely on properties of the halogen-substituent.
Keywords:micelle;solubilization constant;p-halogenated phenol;palisade region;isostructural temperature
- Lee BH, Christian SD, Tucker EE, Scamehorn JF, J. Phys. Chem., 95, 360 (1991)
- Luczak J, Jungnickel C, Markiewicz M, Hupka J, J. Phys. Chem. B, 117(18), 5653 (2013)
- Bradbury R, Penfold J, Thomas RK, Tucker IM, Petkov JT, Jones C, Langmuir, 29(10), 3361 (2013)
- Sakai K, Normura K, Shrestha RG, Endo T, Sakamoto K, Sakai H, Abe M, Langmuir., 28, 17617 (2012)
- Take'uchi M, Moroi Y, J. Colloid Interface Sci., 197(2), 230 (1998)
- Lee NM, Lee BH, J. Kor. Chem. Soc., 56, 1 (2012)
- Lee NM, Lee BH, Appl. Chem. Eng., 22(5), 473 (2011)
- Chaghi R, de Menorval LC, Charnay C, Derrien G, Zajac J, Langmuir, 25(9), 4868 (2009)
- Samiey B, Dalvand Z, Bull. Korean Chem. Soc., 34, 1145 (2013)
- Mueller W, Dejugnat C, Zemb T, Dufreche JF, Diat O, J. Phys. Chem. B, 117(5), 1345 (2013)
- Mehling T, Kloss L, Ingram T, Smirnova I, Langmuir, 29(4), 1035 (2013)
- Wang HY, Feng QQ, Wang JJ, Zhang HC, J. Phys. Chem. B, 114(3), 1380 (2010)
- Banipal TS, Sood AK, Singh K, J. Surfact. Deter., 14, 235 (2011)
- Lee NM, Lee BH, J. Kor. Chem. Soc., 56, 188 (2012)
- Lee BH, Appl. Chem. Eng., 21(3), 337 (2010)
- Khimani M, Ganguly R, Aswal VK, Nath S, Bahadur P, J. Phys. Chem. B, 116(51), 14943 (2012)
- Sammalkorpi M, Karttunen M, Haataja M, J. Phys. Chem. B, 113(17), 5863 (2009)
- Park IJ, Lee BH, J. Surfact Deterg., 15, 41 (2012)
- Gharanjig K, Kiakhani MS, Bagha ART, Khosravi A, Menger FM, J. Surfact. Deterg., 14, 381 (2011)
- Mahajan S, Sharma R, Mahajan RK, Langmuir, 28(50), 17238 (2012)
- Su TL, Lai CC, Tsai PC, J. Surfact. Deterg., 14, 363 (2011)
- Ganguly R, Kuperkar K, Parekh P, Aswal VK, Bahadur P, J. Colloid Interface Sci., 378, 118 (2012)