Applied Chemistry for Engineering, Vol.25, No.1, 66-71, February, 2014
Y 제올라이트 촉매 상에서 Endo-Tetrahydrodicyclopentadiene의 이성화 반응
Isomerization of Endo-tetrahydrodicyclopentadiene over Y Zeolite Catalysts
E-mail:
초록
HY 제올라이트 촉매 상에서 endo-THDCPD의 이성화 반응을 통한 exo-THDCPD 제조에 관한 연구를 수행하였다. HY 제올라이트 촉매의 Si/Al2 비가 증가할 때 endo-THDCPD의 전환율이 증가하는 경향을 보였는데 이는 산점의 세기가 증가했기 때문으로 해석할 수 있다. 그러나 Si/Al2 비가 30인 HY 제올라이트 촉매를 사용한 경우에 최대의 exo-THDCPD 수율을 얻을 수 있었는데, 부산물인 CPD와 oligomer의 생성이 적기 때문으로 해석할 수 있다. 반응 온도가 증가할수록 부산물 생성이 증가하는 것을 고려하여 180 ℃를 최적 반응 온도로 선정할 수 있었다. 촉매의 함량을 증가시키면 exo-THDCPD 수율을 증가시킬 수 있다. HY 제올라이트 촉매를 사용한 endo-THDCPD의 이성화 반응에서 촉매 외부확산 저항보다 촉매 기공 내부확산 저항이 반응 활성에 더 큰 영향을 미친다는 것을 확인할 수 있었다.
Synthesis of exo-tetrahydrodicyclopentadiene (exo-THDCPD) through the isomerization of endo-tetrahydrodicyclopentadiene (endo-THDCPD) was investigated over HY zeolite catalysts. Conversion of endo-THDCPD increased with the increase of Si/Al2 ratio of HY zeolite catalysts, which can be attributed to increase of acid strength with increase of Si/Al2 ratio. Yield of exo-THDCPD, however, was the highest over HY with Si/Al2 ratio of 30, because the production of cyclopentadiene and oligomers was minimized. The optimal reaction temperature was 180 ℃ because the higher reaction temperature increased the production of by-products. The yield of exo-THDCPD also increased with the amount of the catalyst in feed. In the isomerization reaction of endo-THDCPD using the HY zeolite catalysts, it was confirmed that the internal diffusion resistance in the pore of catalysts would have more significant effects on the reaction activity than that of the external diffusion resistance of catalysts.
Keywords:exo-tetrahydrodicyclopentadiene;Y zeolite;acid strength;isomerization;endo-tetrahydrodicyclopentadiene
- Cannell LG, High density fuels, US Patent 4,059,644 (1977)
- Palmova I, Kosek J, Schongut J, Marek M, Stepanek K, Chem. Eng. Sci., 56(3), 927 (2001)
- Zou JJ, Zhang XW, Kong J, Wang L, Fuel, 87(17-18), 3655 (2008)
- Norton RV, Fisher DH, High density fuel compositions, US Patent 4,286,109 (1981)
- Cohen CA, Muessig CW, Jet and rocket fuel, US Patent 3,381,046 (1968)
- Jeong BH, Han JS, Ko SW, Lee JH, Lee BJ, J. Ind. Eng. Chem., 13(2), 310 (2007)
- Norton RV, Fisher DH, Method for preparing high density liquid hydrocarbon fuels, US Patent 4,355,194 (1982)
- Janoski EJ, Schneider A, Ware RE, Process for isomerization of tetrahydrodimethyldicyclopentadiene, US Patent 4,288,644 (1981)
- Norton RV, Howe SC, Production of high energy fuel, US Patent 4,270,014 (1981)
- Schneider A, Ware RE, Janoski EJ, Isomerization of endo-tetrahydrodicyclopentadiene to a missile fuel diluent, US Patent 4,086,284 (1978)
- Olah AG, Farooq O, J. Org. Chem., 51, 5410 (1986)
- Xing EH, Mi ZT, Xin CW, Wang L, Zhang XW, J. Mol. Catal. A-Chem., 231(1-2), 161 (2005)
- Xiong Z, Mi Z, Zhang X, Catal. Commun., 8, 571 (2007)
- Lau GC, Maier WF, Langmuir., 3, 164 (1987)
- Navratilova M, Sporka K, Appl. Catal. A: Gen., 203(1), 127 (2000)
- Sun CM, Li G, Appl. Catal. A: Gen., 402(1-2), 196 (2011)
- Xing E, Zhang X, Wang L, Mi Z, Catal. Commun., 6, 737 (2005)
- Jeong BH, Han JS, Kim SB, Kang CH, Lee BJ, J. Korean Ind. Eng. Chem., 18(1), 36 (2007)
- Sibi MG, Singh B, Kumar R, Pendem C, Sinha AK, Green Chem., 14, 976 (2012)