화학공학소재연구정보센터
Macromolecular Research, Vol.22, No.2, 131-138, February, 2014
Fabrication of poly(ethylene oxide) hydrogels for wound dressing application using E-beam
E-mail:
Cross-linked poly(ethylene oxide) (PEO) hydrogel was developed for application to wound dressings. To determine the optimum conditions for wound dressing materials, PEO with different molecular weights and various PEO/poly(ethylene glycol) diacrylate (PEGDA) compositions were irradiated in order to obtain cross-linked hydrogels using an electron beam with various beam intensities. The contents of the PEGDA influenced the gel fraction, swelling ratio, mechanical properties, and water vapor transmission rate. To evaluate the healing effect of PEO/ PEGDA cross-linked hydrogel for wound dressing, wounds on the backs of mice were covered with PEO/PEGDA hydrogel films. Healing under the wet environment of the hydrogel dressing was faster than with a gauze control and a commercial reference. The results demonstrate the possibility of the facile production of mechanically robust and transparent wound dressing materials with improved wound healing characteristics.
  1. Cartmell JV, Sturtevant WR, Valadez M, Wolf ML Hydrogel Wound Dressing Product, US Patent 5059424 (1991).
  2. Rajendran S, Anand SC, Development in Medical Textiles, The Textile Institute, Manchester, 2002.
  3. Jones L, Maya C, Nazar L, Simpson T, Cont. Lens Anterior Eye, 25, 147 (2002)
  4. Soler DM, Rodriguez Y, Correa H, Moreno A, Carrizales L, Radiat. Phys. Chem., 81, 1249 (2012)
  5. George M, Abraham TE, Pharmaceutics, 335, 123 (2007)
  6. Abdelrahman T, Newton H, Surgery, 29, 491 (2011)
  7. Ikada Y, Mita T, Horii F, Sakurada I, Radiat. Phys. Chem., 9, 633 (1977)
  8. Jang SS, Goddard WA, Kalani MYS, J. Phys. Chem. B, 111(7), 1729 (2007)
  9. Park JS, Gwon SJ, Lim YM, Nho YC, Macromol. Res., 17(8), 580 (2009)
  10. Yoshi F, Zhanshan Y, Isobe K, Shinozaki K, Makuuchi K, Radiat. Phys. Chem., 55, 133 (1999)
  11. Zhang X, Yang D, Nie J, Int. J. Biol. Macromol., 43, 456 (2008)
  12. Durst CA, Cuchiara MP, Mansfield EG, West JL, Grande-Allen KJ, Acta Biomater., 7, 2467 (2011)
  13. Nam SY, Nho YC, Hong SH, Chae GT, Jang HS, Suh TS, Ahn WS, Ryu KE, Chun HJ, Macromol. Res., 12(2), 219 (2004)
  14. Salmawi KME, Ibrahim SM, Macromol. Res., 19(10), 1029 (2011)
  15. Rosiak JM, Ulanski P, Radiat. Phys. Chem., 55, 139 (1999)
  16. Mesquita AC, Mori MN, Silva LGA, Radiat. Phys. Chem., 71, 253 (2004)
  17. Ivanov VS, Radiation Chemistry of Polymers, Koninklijke Wohrmann B. V., Netherlands, 1992.
  18. Wu M, Bao B, Yoshii F, Makuuchi K, J. Radioanal. Nucl. Chem., 250, 391 (2001)
  19. Huang MH, Yang MC, Int. J. Pharm., 346, 38 (2008)
  20. ASTM Standard E96/E96-10, Standard Test Methods for Water Vapor Transmission of Materials, ASTM International, West Conshohocken, 2011.
  21. Razzak MT, Darwis D, Zainuddin, Sukirno, Radiat. Phys. Chem., 62, 107 (2001)
  22. Hirose K, Onishi H, Sasatsu M, Takeshita K, Kouzuma K, Isowa K, Machida Y, Biol. Pharm. Bull., 30, 2406 (2007)
  23. Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SC, Kim JA, Lyoo WS, Han SS, Ku SK, Yong CS, Choi HG, AAPS PharmSciTech, 11, 1092 (2010)
  24. Kim J, Jin S, Ku S, Nam D, Sohn Y, Ryu D, Do ES, Jang S, Son M, Yong C, Choi HG, Kim J, J. Pharm. Invest., 42, 327 (2012)
  25. Lee JH, Lim SJ, Oh DH, Ku SK, Li DX, Yong CS, Choi HG, Arch. Pharm. Res., 33, 1083 (2010)
  26. Levene A, Clin. Otolaryngol. Allied Sci., 6, 145 (1981)
  27. Ludbrook J, Clin. Exp. Pharmacol. Physiol., 24, 294 (1997)
  28. Sung JH, Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS, Han SS, Ku SK, Yong CS, Choi HG, Int. J. Pharm., 392, 232 (2010)
  29. Gedde UW, Polymer Physics, Chapman & Hall, London, 1995.
  30. Queen D, Gaylor JDS, Evans JH, Courtney JH, Reid WH, Biomaterials, 8, 367 (1987)
  31. Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN, Biomaterials, 22, 165 (2001)