화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.3, 436-445, March, 2014
Hydrodynamic behavior of inverse fluidized bed biofilm reactor for phenol biodegradation using Pseudomonas fluorescens
E-mail:
The hydrodynamic characteristic performance of an internal draft tube inverse fluidized bed biofilm reactor was studied for the aerobic biodegradation of phenol (1,200 mg/l) using Pseudomonas fluorescens for various ratios of settled bed volume to reactor working volume (Vb/Vr) under batchwise condition with respect to liquid phase. The operating parameters, such as superficial gas velocity, phase hold ups, aspect ratio and bed height, were analyzed for different ratios of (Vb/Vr). The effect of biodegradation on synthetic phenolic effluent was determined from the reduction in chemical oxygen demand and phenol removal efficiency. The optimum value of (Vb/Vr)m was 0.20 for the optimal superficial gas velocity, Ugm=0.220 m/s with the COD reduction efficiency of 98.5% in 48 hours. The biomass and biofilm characteristics of P. fluorescens were determined for optimal hydrodynamic operating parameters by evaluating its biofilm dry density and thickness, bioparticle density, suspended and attached biomass concentration.
  1. Fan LS, Gas-liquid-solid fluidization engineering, Butterworths, Boston, USA (1989)
  2. Sokol W, Int. J. Chem. React. Eng., 8, 1 (2010)
  3. Sokol W, Hanafi MR, Biochem. Eng. J., 3, 185 (1999)
  4. Nikolov L, Karamenew D, Can. J. Chem. Eng., 65, 214 (1987)
  5. Ulaganathan N, Krishnaiah K, Bioproc. Biosyst. Eng., 15, 159 (1996)
  6. Garnier A, Chavarie C, Andre G, Klvana D, Chem. Eng. Commun., 98, 31 (1990)
  7. Olivieri G, Marzocchella A, Salatino P, Can. J. Chem. Eng., 88(4), 574 (2010)
  8. Fan LS, Muroyama K, Chern SH, Chem. Eng. J., 24, 143 (1982)
  9. Comte MP, Bastoul D, Hebrard G, Roustan M, Lazarova V, Chem. Eng. Sci., 52(21-22), 3971 (1997)
  10. Krishna SV, Bandaru SR, Murthy DVS, Krishnaiah K, China Part., 5, 351 (2007)
  11. Sivasubramanian V, Velan M, J. Chem. Eng. Jpn., 37(12), 1436 (2004)
  12. Ochieng A, Ogada T, Sisenda W, Wambua P, J. Hazard. Mater., 90(3), 311 (2002)
  13. Jena HM, Sahoo BK, Roy GK, Meikap BC, Chem. Eng. J., 145(1), 50 (2008)
  14. Buffiere P, Moletta R, Chem. Eng. Sci., 54(9), 1233 (1999)
  15. Han SJ, Tan RBH, Loh KC, Trans IChemE, 78 (2000)
  16. Renganathan T, Krishnaiah K, Chem. Eng. Sci., 60(10), 2545 (2005)
  17. Gomez L, Bodalo A, Gomez E, Chem. Eng. J., 127, 47 (2006)
  18. Choi HS, Shin MS, Korean J. Chem. Eng., 16(5), 670 (1999)
  19. Sowmeyan R, Swaminathan G, Bioresour. Technol., 99(9), 3877 (2008)
  20. de Souza AAU, Brandao HL, Zamporlini IM, Soares HM, de AGU de Souza SM, Res. Conserv. Recycl., 52, 511 (2008)
  21. Souza R, Bresolin ITL, Bioni TL, Gimenes ML, Dias BP, Braz. J. Chem. Eng., 21, 219 (2004)
  22. Agarry SE, Solomon BO, Int. J. Environ. Sci. Technol., 5, 223 (2008)
  23. Kotresha D, Vidyasagar GM, Biotechnol. Bioeng., 33, 987 (2007)
  24. APHA-AWA-WPCF1992, Standards methods for the examination of water and waste water, Sixteenth Ed., American Public Health Association, American Water Works Association: Water Pollution Control Federation, Washington, DC, USA (1992)
  25. Yang RD, Humphrey AE, Biotechnol. Bioeng., 17, 1211 (1975)
  26. Agarry SE, Solomon BO, Int. J. Environ. Sci. Technol., 5, 223 (2008)
  27. Rajasimman M, Karthikeyan C, Front. Chem. Eng. China, 3, 235 (2009)
  28. Rabah KJF, Dahab FM, Water Res., 38, 4262 (2004)
  29. Fan LS, Hwang SJ, Matsuura A, Chem. Eng. Sci., 39, 1677 (1984)
  30. Renganathan T, Krishnaiah K, Can. J. Chem. Eng., 81(3-4), 853 (2003)
  31. Sokol W, Ambaw A, Woldeyes B, Chem. Eng. J., 150(1), 63 (2009)
  32. Lee JC, Buckley PS, Fluid mechanics and aeration characteristics of fluidized beds, In: P. F. Cooper, B. Atkinson (Ed.), Biological fluidized bed treatment of water and wastewater, Ellis Horwood, Chichester, UK (1981)
  33. Tang WT, Fan LS, AIChE J., 33, 239 (1987)
  34. Olivieri G, Russo ME, Marzocchella A, Salatino P, Biotechnol. Prog., 27(6), 1599 (2011)
  35. Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639 (1997)
  36. Arun N, Razack AA, Sivasubramanian V, Chem. Eng. Commun., 200(9), 1260 (2013)
  37. Coelhoso I, Boatventura R, Rodriguez A, Biotechnol. Bioeng., 40, 625 (1992)
  38. Liu Y, Tay JH, Water Res., 36, 1653 (2002)
  39. Beyenal H, Tanyolac A, Biochem. Eng. J., 1, 53 (1998)
  40. Kwok WK, Picioreanu C, Ong SL, van Loosdrecht MCM, Ng WJ, Heijnen JJ, Biotechnol. Bioeng., 58(4), 400 (1998)
  41. Fujie K, Hu HY, Ikeda Y, Urano K, Chem. Eng. Sci., 47, 3745 (1992)
  42. Chen RC, Reese J, Fan LS, AIChE J., 40(7), 1093 (1994)
  43. Guo YX, Rathor MN, Ti HC, Chem. Eng. J., 67, 205 (1997)
  44. Hill GA, Robinson CW, Biotechnol. Bioeng., 17, 1599 (1975)
  45. Schroder M, Muller C, Posten C, Deckwer WD, Hecht V, Biotechnol. Bioeng., 54(6), 567 (1997)