화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.3, 452-460, March, 2014
Recovery of copper from a surface altered chalcopyrite contained ball mill spillage through bio-hydrometallurgical route
E-mail:
Bioleaching studies for chalcopyrite contained ball mill spillages are very scarce in the literature. We developed a process flow sheet for the recovery of copper metal from surface activated (600 ℃, 15 min) ball mill spillage through bio-hydrometallurgical processing route. Bioleaching of the activated sample using a mixed meso-acidophilic bacterial consortium predominantly A. ferrooxidans strains was found to be effective at a lixiviant flow rate of 1.5 L/h, enabling a maximum 72.36% copper recovery in 20 days. Mineralogical as well as morphological changes over the sample surface were seen to trigger the bioleaching efficiency of meso-acidophiles, thereby contributing towards an enhanced copper recovery from the ball mill spillage. The bio-leach liquor containing 1.84 g/L Cu was purified through solvent extraction using LIX 84I in kerosene prior to the recovery of copper metal by electrowinning. Purity of the copper produced through this process was 99.99%.
  1. Wang S, J. Microbiol., 57, 48 (2005)
  2. Olubambi PA, Ndlovu S, Potgieter JH, Borode JO, Hydrometallurgy, 86, 96 (2007)
  3. Panda S, Sarangi CK, Pradhan N, Subbaiah T, Sukla LB, Mishra BK, Bhatoa GL, Prasad MSR, Ray SK, Korean J. Chem. Eng., 26, 781 (2012)
  4. Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK, Hydrometallurgy, 125-126, 157 (2012)
  5. Panda S, Parhi PK, Pradhan N, Mohapatra UB, Sukla LB, Park KH, Hydrometallurgy, 121-124, 116 (2012)
  6. Renman R, Xingyu L, Gang Z, Jinghe C, Jiankang W, Dianzuo W, Hydrometallurgy, 108, 130 (2011)
  7. Rawlings DE, Johnson BD Eds., Biomining, Springer (2007)
  8. Crundwell FK, Hydrometallurgy, 21, 155 (1988)
  9. Habashi F, McGraw-Hill, New York (1978)
  10. Watling HR, Hydrometallurgy, 84, 81 (2006)
  11. Qiu M, Xiong S, Zhang W, Wang G, Min. Eng., 18, 987 (2005)
  12. Valdes J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS, BMC Genomics, 9, 597 (2008)
  13. Baba AA, Adekola FA, Atata RF, Ahmed RN, Panda S, Trans. Nonferrous Met. Soc. China, 21, 2535 (2011)
  14. Acar S, Brierley JA, Wan RY, Hydrometallurgy, 77, 239 (2005)
  15. Bull AT, Korean J. Chem. Eng., 18(2), 137 (2001)
  16. Rao KS, Mishra A, Pradhan D, Chaudhury GR, Mohapatra BK, Das T, Sukla LB, Mishra BK, Korean J. Chem. Eng., 25(3), 524 (2008)
  17. Sukla LB, Nathsarma KC, Mahanta JR, Singh S, Behera S, Rao KS, Subbaiah T, Mishra BK, Korean J. Chem. Eng., 26(6), 1668 (2009)
  18. Panda S, Parhi PK, Nayak BD, Pradhan N, Mohapatra UB, Sukla LB, Bioresour. Technol., 130, 332 (2013)
  19. Norgate T, Jahanshahi S, Min. Eng., 23, 65 (2010)
  20. Mohapatra S, Sengupta C, Nayak BD, Sukla LB, Mishra BK, Korean J. Chem. Eng., 25(5), 1070 (2008)
  21. Panda S, Panda SK, Nayak BD, Rao DS, Pradhan N, Sukla LB, Mishra BK, Proceedings of the XI international seminar on mineral processing technology, NML Jamshedpur, India, 955 (2010)
  22. Panda S, Pradhan N, Mohapatra UB, Panda SK, Rath SS, Nayak BD, Rao DS, Sukla LB, Mishra BK, Front. Env. Sci. Eng., 7, 281 (2013)
  23. Silverman MP, Lundgren DG, J. Bacteriol., 77, 642 (1959)
  24. Modaka JM, Natarajan KA, Mukhopadhyay S, Hydrometallurgy, 42, 51 (1996)
  25. Sand W, Gehrke T, Jozsa PG, Schippers A, Hydrometallurgy, 59, 159 (2001)
  26. Web reference: http://www.minweb.co.uk/quartz/alphaquartz.html, Accessed on 03.04.2013.