Korean Journal of Chemical Engineering, Vol.31, No.7, 1168-1173, July, 2014
Effect of La2O3 promoter on NiO/Al2O3 catalyst in CO methanation
E-mail:
A series of NiO/Al2O3 catalysts promoted by different La2O3 contents were prepared by impregnation method. The physicochemical properties of NiO-La2O3/Al2O3 were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), H2 temperature programmed reduction (H2-TPR) and H2 chemisorption. The effect of La2O3 on the activity of NiO/Al2O3 for CO methanation was investigated in a fixed bed reactor. A lifetime test, as well as thermogravimetric (TG)analysis, was performed to investigate the stability performance and anti-carbon deposition of catalysts. The results showed that the addition of La2O3 can restrain the growth of NiO particles, increase the H2 uptake and Ni dispersion, and therefore enhance the activity of catalysts. When the La2O3 content was 3 wt%, a CO conversion of 98% and a selectivity to CH4 of 96% were obtained at 400 oC. Furthermore, the catalyst NiO-La2O3/Al2O3 with 3 wt% La2O3 content displayed highly stable performance in long-term tests, especially exhibiting good anti-carbon deposition property.
- Liu ZH, Chu BZ, Zhai XL, Jin Y, Cheng Y, Fuel, 95(1), 599 (2012)
- Andersson MP, Abild-Pedersen E, Remediakis IN, Bligaard T, Jones G, Engbwk J, Lytken O, Horch S, Nielsen JH, Sehested J, Rostrup-Nielsen JR, Norskov JK, Chorkendorff I, J. Catal., 255(1), 6 (2008)
- Ma S, Tan Y, Han Y, J. Ind. Eng. Chem., 17(4), 723 (2011)
- Mao XQ, Guo XR, Chang YG, Peng YD, Energy Policy, 33(3), 307 (2005)
- Zhao W, Wang H, Qian K, Petrol. Explor. Dev., 36, 280 (2009)
- Sabatier P, Senderens JB, Hebd CR, Acad. Sci., 134, 514 (1902)
- Kopyscinski J, Schildhauer TJ, Biollaz SMA, Chem. Eng. Technol., 32(3), 343 (2009)
- Panagiotopoulou P, Kondarides DI, Verykios XE, Appl. Catal. B: Environ., 88(3-4), 470 (2009)
- Park ED, Lee D, Lee HC, Catal. Today, 139, 280 (2009)
- Snel R, Ind. Eng. Chem. Res., 28, 654 (1989)
- Berry FJ, Murray A, Parkyns ND, Appl. Catal. A, 100, 131 (1993)
- Fujita S, Nakamura M, Doi T, Takezawa N, Appl. Catal. A, 104, 87 (1993)
- Da Silva CDD, Letichevsky S, Borges LEP, Appel LG, Int. J. Hydrog. Energy, 37, 8923 (2012)
- Kok E, Scott J, Cant N, Trimm D, Catal. Today, 164(1), 297 (2011)
- Guo CL, Zhang JL, Zhang XL, React. Kinet. Catal. Lett., 95(1), 89 (2008)
- Zhang LF, Liu J, Li W, Guo CL, Zhang JL, J. Nat. Gas Chem., 18, 55 (2008)
- Zhang LF, Li W, Liu J, Guo CL, Wang YP, Zhang JL, Fuel, 3, 511 (2008)
- Guo JJ, Lou H, Zhao H, Chai DF, Zheng XM, Appl. Catal. A: Gen., 273(1-2), 75 (2004)
- Zhang H, Dong YY, Fang WP, Lian YX, Chin. J. Catal., 34, 330 (2013)
- Hu DC, Gao JJ, Ping Y, Jia LH, Gunawan P, Zhong ZY, Xu GW, Gu FN, Su FB, Ind. Eng. Chem. Res., 51(13), 4875 (2012)
- Zou XJ, Wang XG, Li L, Shen K, Lu XG, Ding WZ, Int. J. Hydrog. Energy, 35, 12191 (2010)
- Ruckenstein E, Hu YH, J. Catal., 161, 55 (1991)
- Lima SM, Assaf JM, Pena MA, Fierro JLG, Appl. Catal. A: Gen., 311, 94 (2006)
- Gallego GS, Mondragon F, Barrault J, Tatibouet JM, Batiot-Dupeyrat C, Appl. Catal. A: Gen., 311, 164 (2006)
- Kuras M, Roucou R, Petit C, J. Mol. Catal. A-Chem., 265(1-2), 209 (2007)
- Liu DP, Quek XY, Cheo WNE, Lau R, Borgna A, Yang YH, J. Catal., 266(2), 380 (2009)