Polymer(Korea), Vol.38, No.2, 193-198, March, 2014
사출압축성형에서 복굴절을 통한 성형조건에 따른 성형특성 고찰
Investigation of Molding Characteristics in Injection Compression Molding According to Molding Conditions through Birefringence
E-mail:
초록
렌즈 그리고 DVD 등과 같은 성형품들은 우수한 광학적 특성을 필요로 한다. 일반사출성형 공정은 캐비티내에 압력이 높고 큰 온도변화를 포함하게 되어 성형품에 큰 잔류응력이 남아 광학적 품질이 저하된다. 따라서 이와 같은 제품들은 성형 시 잔류응력을 최소화하기 위해 캐비티 내의 압력을 낮게 그리고 균일하게 조절할 수 있는 사출압축성형 공정을 사용하는 경우가 많다. 본 연구에서는 실험을 통하여 사출압축 성형품에 영향을 주는 성형인자를 분석하였다. 다수 캐비티 금형을 이용하여 캐비티 간 품질편차도 고찰하였다. 실험에 사용한 재료는 투명수지인 PC와 PS이었다. 사출압축성형의 실험에서 공정변수로는 압축거리, 압축속도, 압축력 그리고 압축지연시간을 이용하였다. 실험결과, 사출압축성형 공정 변수 중 압축력과 압축지연시간 그리고 압축거리가 광학적 특성에 크게 영향을 미쳤으며 그 정도는 수지에 따라 다르게 나타났다. 이러한 현상은 사출압축성형 시 수지마다 유동성에 따라 최적의 성형조건이 있음을 의미하는 것이다.
Lens and DVD require high quality of optical property. Conventional injection molded products contain high residual stress and this invokes birefringence since high cavity pressure and high temperature variation are involved in a molding process. Thus these products are often molded by injection compression molding in order to minimize the residual stress through reducing cavity pressure and uniform cavity pressure. In this study, molding parameters affecting molding quality such as property uniformity in injection compression molding were investigated through experiment. Molding quality deviations among the cavities in multi-cavity mold were also studied. Transparent resins, PC and PS were used in this study. Compression gap, compression speed, compression force, and compression delay time for processing variables in injection compression molding were applied in experiment. Compression force, compression delay time, and compression gap significantly affected the optical property of product. The degree of influence of process variable on the product quality was different in different resins. This implies that the optimal operational conditions in injection compression molding existed for each resin according to flow property.
Keywords:injection compression molding;compression gap;compression force;compression delay time;compression speed.
- Hong JS, Park SR, Lyu MY, Polym.(Korea), 35(1), 1 (2011)
- Cho SH, Hong JS, Lyu MY, Polym.(Korea), 35(5), 467 (2011)
- Cho JH, Park SR, Kim H, Lyu MY, Polym.(Korea), 36(2), 131 (2012)
- Chun YH, An HG, Lyu MY, Elastomers and Composites, 47, 341 (2012)
- Shibata HAY, Tanaka T, U.S. Patent 7,691,314 (2010)
- Polk DE, U.S. Patent 8,070,471 (2011)
- Michaeli W, Hesner S, Klaiber F, Forster J, Annals of CIRP, 56, 545 (2007)
- Lee HS, Jeon WT, Kim SW, Trans. KSME A, 37, 39 (2013)
- Yang SY, Chen YC, Adv. Polym. Technol., 17(4), 353 (1998)
- Chen SC, Chen YC, Peng HS, J. Appl. Polym. Sci., 75(13), 1640 (2000)
- Chen SC, Chen YC, Peng HS, Huang LT, Adv. Polym. Technol., 21(3), 177 (2002)
- Chen SC, Chen YC, Cheng NT, Int. Comm. Heat Mass Transfer, 25, 907 (1998)
- Lee YB, Kwon TH, Yoon KH, Trans. KSME A, 26, 2342 (2002)
- Strainoptic Technologies, Inc., “Photoelasticity principles and measuring techniques (IM-100),” in Operation Manual for PS-100.
- Wales JLS, Philippoff W, Rheo. Acta, 12, 25 (1973)
- Lyu MY, Hong JS, Goo JI, Hwang KH, Fall Meeting of the Polymer Society of Korea, 34, 101 (2009)
- Kang MA, Lyu MY, Polym.(Korea), 32(6), 501 (2008)
- Kim HS, Kim JG, Lee JW, Korean J. Rheol., 8(1), 58 (1996)