화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.52, No.2, 205-208, April, 2014
AAO 템플레이트을 이용한 균일한 공액고분자 나노와이어
Fabrication and Characterization of Conjugated Polymer Nanowires with Uniformed Size
E-mail:
초록
본 논문에서는 유기전자소자의 반도체 물질로 많이 사용되는 poly(9,9-dioctylflurorene) (PFO), poly(9,9-dioctylfluoreneco-benthiadiazole) (F8BT), (regioregular poly(3-hexylthiophene) (P3HT)를 기반으로 하는 균일한 크기와 특성을 가지는 고분자 나노와이어를 AAO 템플레이트를 이용하여 대량으로 제작하였다. 제작된 나노와이어는 결점이 없이 깨끗한 표면을 보였으며, 약 250~300 nm의 지름과 ~30 μm의 일정한 길이를 가지고 있었다. 나노와이어들은 스프레이 분사 방법을 통하여 유리 기판 위에 균일하게 분사할 수 있었으며, PFO와 F8BT 나노와이어의 경우 UV 빛의 조사하에 각각 나노와이어의 전체에 걸쳐서 왜곡없이 밝은 yellow와 blue luminescence를 보였다.
Here, we reported mass-produced organic nanowires with uniform sizes based on poly(9,9-dioctylflurorene) (PFO), poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT), (regioregular poly(3-hexylthiophene) (P3HT) which are well known as organic semiconductors for opto/electronics applications, using a melt-assisted wetting method with anodic alumina membrane. The conjugated polymer nanowires showed uniformed diameters (D=250~300 nm) and lengths (L =~30 μm) with defect free smooth surface regardless of a kinds of semiconductors. In addition, the nanowires were uniformly deposited onto glass substrates by spray-coating method. Under the UV light irradiation, PFO and F8BT nanowires showed blue and yellow emissions, respectively.
  1. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ, Adv. Mater., 15(5), 353 (2003)
  2. Thelander C, Agarwal P, Brongersma S, Eymery J, Feiner LF, Forchel A, Scheffler M, Riess W, Ohlsson BJ, Gosele U, Samuelson L, Mater. Today, 9, 28 (2006)
  3. Lee G, Cho YS, Park S, Yi GR, Korean J. Chem. Eng., 28(8), 1641 (2011)
  4. Duan X, Huang Y, Cui Y, Wang J, Lieber CM, Nature, 409, 66 (2001)
  5. Li Y, Qian F, Xiang J, Lieber CM, Mater. Today, 9, 18 (2006)
  6. Hochbaum AI, Yang PD, Chem. Rev., 110(1), 527 (2010)
  7. Farchioni R, Grosso G, “Organic Electronic Materials: Conjugated Polymers and Low Molecular Weight Organic Solid,” Springer: Berlin (2001)
  8. Grimsdale AC, Mullen K, Angew. Chem., Int. Ed., 44, 5592 (2005)
  9. Briseno AL, Mannsfeld SCB, Jenekhe SA, Bao Z, Xia Y, Mater. Today, 11, 38 (2008)
  10. Shi J, Guo M, Li B, Appl. Phys. Lett., 93, 121101 (2008)
  11. Liu H, Reccius CH, Craighead HG, Appl. Phys. Lett., 87, 253106 (2005)
  12. Min SY, Kim TS, Kim BJ, Cho H, Noh YY, Yang H, Cho JH, Lee TW, Nat. Commun., 4, 1773 (2013)
  13. Zhang C, Yan Y, Zhao YS, Yao J, Annu.Rep. Prog. Chem., Sect. C: Phys. Chem., 109, 211 (2013)
  14. Steinhart M, Wendorff JHM, Greiner AM, Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gosele U, Science, 296, 1997 (2002)
  15. Khim D, Baeg KJ, Noh YY, Kim DY, J. Nanosci. Nanotechnol., 12, 1260 (2012)
  16. Kim S, Yim J, Wang X, Bradley Donal D. C, Lee S, deMello JC, Adv. Mater., 20, 2310 (2010)