Clean Technology, Vol.20, No.1, 64-71, March, 2014
이산화탄소 분위기에서 K2CO3, Na2CO3, CaCO3 및 Dolomite가 첨가된 저급탄의 가스화에 대한 반응특성연구
Kinetic study on Low-rank Coal Including K2CO3, Na2CO3, CaCO3 and Dolomite Gasification under CO2 Atmosphere
E-mail:
초록
열중량분석기를 이용하여 이산화탄소 분위기에서 알칼리계 염류가 에코(Eco)탄의 가스화 반응에 미치는 영향을 알아보았다. 750~900 ℃에서 탄산칼륨, 탄산나트륨, 탄산칼슘, 백운석(Dolomite) 7 wt%의 알칼리염을 첨가한 것과 원탄을 이용하여 실험을 진행하였다. 850 ℃에서의 가스화 결과, 이산화탄소의 농도가 증가할수록 반응속도가 증가하는 경향을 관찰하였다. 그러나 70% 이상의 농도에서는 반응속도의 증가량이 크게 증가하지 않음을 관찰하였다. 가스화 반응속도는 7 wt% 탄산나트륨 > 7 wt% 탄산칼륨 > 원탄> 7 wt% 백운석 > 7 wt% 탄산칼슘 순으로 나타났다. 700 ℃, 800 ℃, 850 ℃ 그리고 900 ℃의 등온, 상압조건에서 가스화 실험 결과, 온도가 증가할수록 반응속도가 증가함을 관찰하였다. 차(char)-이산화탄소 가스화 반응의 기-고체 모델은 volumetric reaction model (VRM)이 탄소 전환율 거동을 가장 잘 묘사했다. 이를 이용하여 얻은 탄산나트륨의 활성화 에너지는 83 kJ/mol로 가장 낮게 얻어졌다.
We have investigated the effects of various additives on Eco coal gasification under CO2 atmosphere. The temperature ranges from 750~900 ℃ and the gasification experimental was carried out with Eco coal adding 7 wt% K2CO3, Na2CO3, CaCO3, Dolomite, and non-additive under N2 and CO2 gas mixture. At 850 ℃, we observed that the reaction rate increased when the
concentration of CO2 increased. However, we also observed that the increment of reaction rate was small at more than 70% of the concentration of CO2. The additives activity was ranked as 7 wt% Na2CO3 > 7 wt% K2CO3 > non-additive > 7 wt% Dolomite > 7 wt% CaCO3 at 850 ℃. At the temperatures of 750 ℃, 800 ℃, 850 ℃, and 900 ℃, when the temperature increased, the gasification rate increased. The gasification was suitably described by the volumetric reaction model. Using volumetric reaction model, the activation energy of Eco coal including 7 wt% Na2CO3 gasification was 83 kJ/mol, which was the lowest value among all the alkaline additives.
- Kim SC, Kim U, Ju H, Soc. Air-Cond. Refrig., 7, 883 (2011)
- Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL, Fuel Process. Technol., 74(3), 161 (2001)
- Sun ZQ, Wu JH, Zhang DK, Energy Fuels, 22(4), 2160 (2008)
- Trommer D, Steinfeld A, Energy Fuels, 20(3), 1250 (2006)
- Ye DP, Agnew JB, Zhang DK, Fuel, 77(11), 1209 (1998)
- Guzman GL, Wolf EE, Ind. Eng. Chem. Process Des. Dev., 21(1), 25 (1982)
- Lee WJ, Kim SD, Fuel, 74(9), 1387 (1995)
- Mochida I, Sakanishi K, Fuel, 79(3), 221 (2000)
- Song B, Kang S, Kim S, Korean J. Chem. Eng., 30(6), 749 (1992)
- Brooks JD, Taylor G, Walker PL, New York, 4, 243 (1968)
- McKee DW, Spiro CL, Kosky PG, Lamby EJ, Fuel, 62(2), 217 (1983)
- Sams DA, Talverdian T, Shadman F, Fuel, 64, 1208 (1985)
- Li S, Cheng Y, Fuel, 74(3), 456 (1995)
- Aranda A, Murillo R, Garcia T, Callen MS, Mastral AM, Chem. Eng. J., 126(2-3), 79 (2007)
- Wen C, Ind. Eng. Chem., 60, 34 (1968)
- Ishida M, Wen C, AIChE J., 14(2), 311 (1968)
- Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng.; (United States), 25(1) (1985)
- Howard J, Elliott M, “Chemistry of Coal Utilization,” 2nd Suppl. Vol (1981)
- Wen WY, Catal. Rev., 22(1), 1 (1980)
- Wood BJ, Fuel, 63(11), 1600 (1984)
- Adjorlolo AA, Rao YK, Carbon, 22(2), 173 (1984)
- Kopyscinski J, Rahman M, Gupta R, Mims CA, Hill JM, Fuel, 117, 1181 (2013)
- Matsuoka K, Yamashita T, Kuramoto K, Suzuki Y, Takaya A, Tomita A, Fuel, 87(6), 885 (2008)
- Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12 (2011)
- Dutta S, Wen C, Belt R, Ind. Eng. Chem. Process Des. Dev., 16(1), 20 (1977)
- Ergun S, J. Phys. Chem., 60(4), 480 (1956)