화학공학소재연구정보센터
Clean Technology, Vol.20, No.1, 64-71, March, 2014
이산화탄소 분위기에서 K2CO3, Na2CO3, CaCO3 및 Dolomite가 첨가된 저급탄의 가스화에 대한 반응특성연구
Kinetic study on Low-rank Coal Including K2CO3, Na2CO3, CaCO3 and Dolomite Gasification under CO2 Atmosphere
E-mail:
초록
열중량분석기를 이용하여 이산화탄소 분위기에서 알칼리계 염류가 에코(Eco)탄의 가스화 반응에 미치는 영향을 알아보았다. 750~900 ℃에서 탄산칼륨, 탄산나트륨, 탄산칼슘, 백운석(Dolomite) 7 wt%의 알칼리염을 첨가한 것과 원탄을 이용하여 실험을 진행하였다. 850 ℃에서의 가스화 결과, 이산화탄소의 농도가 증가할수록 반응속도가 증가하는 경향을 관찰하였다. 그러나 70% 이상의 농도에서는 반응속도의 증가량이 크게 증가하지 않음을 관찰하였다. 가스화 반응속도는 7 wt% 탄산나트륨 > 7 wt% 탄산칼륨 > 원탄> 7 wt% 백운석 > 7 wt% 탄산칼슘 순으로 나타났다. 700 ℃, 800 ℃, 850 ℃ 그리고 900 ℃의 등온, 상압조건에서 가스화 실험 결과, 온도가 증가할수록 반응속도가 증가함을 관찰하였다. 차(char)-이산화탄소 가스화 반응의 기-고체 모델은 volumetric reaction model (VRM)이 탄소 전환율 거동을 가장 잘 묘사했다. 이를 이용하여 얻은 탄산나트륨의 활성화 에너지는 83 kJ/mol로 가장 낮게 얻어졌다.
We have investigated the effects of various additives on Eco coal gasification under CO2 atmosphere. The temperature ranges from 750~900 ℃ and the gasification experimental was carried out with Eco coal adding 7 wt% K2CO3, Na2CO3, CaCO3, Dolomite, and non-additive under N2 and CO2 gas mixture. At 850 ℃, we observed that the reaction rate increased when the concentration of CO2 increased. However, we also observed that the increment of reaction rate was small at more than 70% of the concentration of CO2. The additives activity was ranked as 7 wt% Na2CO3 > 7 wt% K2CO3 > non-additive > 7 wt% Dolomite > 7 wt% CaCO3 at 850 ℃. At the temperatures of 750 ℃, 800 ℃, 850 ℃, and 900 ℃, when the temperature increased, the gasification rate increased. The gasification was suitably described by the volumetric reaction model. Using volumetric reaction model, the activation energy of Eco coal including 7 wt% Na2CO3 gasification was 83 kJ/mol, which was the lowest value among all the alkaline additives.
  1. Kim SC, Kim U, Ju H, Soc. Air-Cond. Refrig., 7, 883 (2011)
  2. Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL, Fuel Process. Technol., 74(3), 161 (2001)
  3. Sun ZQ, Wu JH, Zhang DK, Energy Fuels, 22(4), 2160 (2008)
  4. Trommer D, Steinfeld A, Energy Fuels, 20(3), 1250 (2006)
  5. Ye DP, Agnew JB, Zhang DK, Fuel, 77(11), 1209 (1998)
  6. Guzman GL, Wolf EE, Ind. Eng. Chem. Process Des. Dev., 21(1), 25 (1982)
  7. Lee WJ, Kim SD, Fuel, 74(9), 1387 (1995)
  8. Mochida I, Sakanishi K, Fuel, 79(3), 221 (2000)
  9. Song B, Kang S, Kim S, Korean J. Chem. Eng., 30(6), 749 (1992)
  10. Brooks JD, Taylor G, Walker PL, New York, 4, 243 (1968)
  11. McKee DW, Spiro CL, Kosky PG, Lamby EJ, Fuel, 62(2), 217 (1983)
  12. Sams DA, Talverdian T, Shadman F, Fuel, 64, 1208 (1985)
  13. Li S, Cheng Y, Fuel, 74(3), 456 (1995)
  14. Aranda A, Murillo R, Garcia T, Callen MS, Mastral AM, Chem. Eng. J., 126(2-3), 79 (2007)
  15. Wen C, Ind. Eng. Chem., 60, 34 (1968)
  16. Ishida M, Wen C, AIChE J., 14(2), 311 (1968)
  17. Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng.; (United States), 25(1) (1985)
  18. Howard J, Elliott M, “Chemistry of Coal Utilization,” 2nd Suppl. Vol (1981)
  19. Wen WY, Catal. Rev., 22(1), 1 (1980)
  20. Wood BJ, Fuel, 63(11), 1600 (1984)
  21. Adjorlolo AA, Rao YK, Carbon, 22(2), 173 (1984)
  22. Kopyscinski J, Rahman M, Gupta R, Mims CA, Hill JM, Fuel, 117, 1181 (2013)
  23. Matsuoka K, Yamashita T, Kuramoto K, Suzuki Y, Takaya A, Tomita A, Fuel, 87(6), 885 (2008)
  24. Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12 (2011)
  25. Dutta S, Wen C, Belt R, Ind. Eng. Chem. Process Des. Dev., 16(1), 20 (1977)
  26. Ergun S, J. Phys. Chem., 60(4), 480 (1956)