화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.25, No.2, 134-141, April, 2014
바이오플라스틱 생산 미생물 플랫폼 제작을 위한 대사공학 전략 개발
Development of Metabolic Engineering Strategies for Microbial Platform to Produce Bioplastics
E-mail:,
초록
환경오염, 기후변화, 고갈되어가는 화석원료에 대한 문제를 해결하기 위해 재생가능한 자원으로부터 케미칼 및 고분자 등의 산업자원을 생산하는 친환경 공정개발에 많은 연구가 진행되고 있다. 최근에 재생가능한 바이오매스로부터 다양한 케미칼 및 고분자 등을 생산하는 바이오리파이너리 공정이 많은 관심을 받고 있으며, 석유화학기반산업을 보완 혹은 대체할 가능성이 매우 높은 친환경공정으로 생각되고 있다. 본 총설에서는 바이오리파이너리 공정에 핵심적인 촉매로 사용되고 있는 재조합 미생물의 개발의 최근 동향을 바이오나일론, 바이오폴리에스터의 생산을 위하여 개발되고 있는 재조합 미생물의 대사공학전략을 중심으로 살펴보고자 한다.
As the concerns about environmental problems, climate change and limited fossil resources increase, bio-based production of chemicals and polymers from renewable resources gains much attention as one of the promising solutions to deal with these problems. To solve these problems, much effort has been devoted to the development of sustainable process using renewable resources. Recently, many chemicals and polymers have been synthesized by biorefinery process and these bio-based chemicals and plastics have been suggested as strong candidates to substitute petroleum-based products. In this review, we discuss current advances on the development of metabolically engineered microorganisms for the efficient production of bio-based chemicals and polymers.
  1. The future of industrial biorefineries, World Economic Forum report (2010)
  2. Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY, Nat. Chem. Biol., 8, 536 (2012)
  3. Park JH, Lee SY, Kim TY, Kim HU, Trends Biotechnol., 26, 404 (2008)
  4. Atsumi S, Liao JC, Appl. Environ. Microbiol., 74, 7802 (2008)
  5. Jang YS, Lee J, Malaviya A, Seung DY, Cho JH, Lee SY, Biotechnol. J., 7, 186 (2012)
  6. Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH et al, MBio., 3, 00314 (2012)
  7. Zhang K, Sawaya MR, Eisenberg DS, Liao JC, Proc. Natl. Acad. Sci. USA., 105, 20653 (2008)
  8. Qian ZG, Xia XX, Lee SY, Biotechnol. Bioeng., 104(4), 651 (2009)
  9. Qian ZG, Xia XX, Lee SY, Biotechnol. Bioeng., 108(1), 93 (2011)
  10. Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Bioprocess Biosyst. Eng., 36, 885 (2013)
  11. Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Metab. Eng., 16, 42 (2013)
  12. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Nat. Chem. Biol., 7, 445 (2011)
  13. Rathnasingh C, Raj SM, Jo JE, Park S, Biotechnol. Bioeng., 104(4), 729 (2009)
  14. Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih JK, Kim C H, Jeong H, Hur CG, Kim JJ, Nat. Biotechnol., 22, 1275 (2004)
  15. Lee SJ, Song H, Lee SY, Appl. Environ. Microb., 72, 1939 (2006)
  16. Song H, Lee SY, Enzyme Microb. Technol., 39(3), 352 (2006)
  17. Drumright RE, Gruber PR, Henton DE, Adv. Mater., 12(23), 1841 (2000)
  18. Mehta R, Kumar V, Bhunia H, Upadhyay SN, Polym. Rev., 45, 325 (2005)
  19. Vink ETH, Rabago KR, Glassner D, Gruber PR, Polym. Degrad. Stab., 80, 403 (2003)
  20. Lee SY, Biotechnol. Bioeng., 49(1), 1 (1996)
  21. Gao X , Chen JC, Wu Q, Chen GQ, Curr. Opin. Biotechnol., 22, 768 (2011)
  22. Madison LL, Huisman GW, Microbiol. Mol. Biol. Rev., 63, 21 (1999)
  23. Park SJ, Kim TW, Kim MK, Lee SY, Lim SC, Biotechnol. Adv., 30, 1196 (2012)
  24. Roberts E, Frankel S, J. Biol. Chem., 188, 789 (1951)
  25. Stanton HC, Arch. Int. Pharmacodyn. Ther., 143, 195 (1963)
  26. Kim SH, Shin BH, Kim YH, Nam SW, Jeon SY, Biotechnol. Bioprocess Eng., 12, 707 (2007)
  27. Wang Q, Xin Y, Zhang F, Feng Z, Fu J, Luo L, Yin Z, World J. Microbiol. Biotechnol., 27, 693 (2011)
  28. 김민홍, 효소를 이용한 고순도 감마 아미노 부틸산의 제조방법 국 내등록특허 10-0857215 (2008)
  29. Dinh TH, Ho NAT, Kang TJ, McDonald KA, Won K, Salt-free production of γ-aminobutyric acid from glutamate using glutamate decarboxylase separated from Escherichia coli, J. Chem. Tech. Biotechnol., DOI: 10.1002/jctb.4251 (2013)
  30. Li H, Qiu T, Huang G, Cao Y, Microb. Cell. Fact., 9, 85 (2010)
  31. Le Vo TD, Kim TW, Hong SH, Bioprocess Biosyst. Eng., 35, 645 (2012)
  32. Le Vo TD, Ko JS, Park SJ, Lee SH, Hong SH, J. Ind. Microbiol. Biotechnol., 40, 927 (2013)
  33. Le Vo TD, Ko JS, Lee SH, Park SJ, Hong SH, Biotechnol. Bioprocess Eng., 18, 1062 (2013)
  34. Steinbuchel A, Valentin HE, FEMS Microbiol. Lett., 128, 219 (1995)
  35. Jung YK, Kim TY, Park SJ, Lee SY, Biotechnol. Bioeng., 105(1), 161 (2010)
  36. Yang TH, Kim TW, Kang HO, Lee SH, Lee EJ, Lim SC, Oh SO, Song AJ, Park SJ, Lee SY, Biotechnol. Bioeng., 105(1), 150 (2010)
  37. Yuan W, Jia Y, Tian J, Snell KD, Muh U, Sinskey AJ, Lambalot R H, Walsh CT, Stubbe J, Arch. Biochem. Biophys., 394, 87 (2001)
  38. Zhang S, Kamachi M, Takagi Y, Lenz RW, Goodwin S, Appl. Microbiol. Biotechnol., 56(1-2), 131 (2001)
  39. Selmer T, Willanzheimer A, Hetzel M, Eur. J. Biochem., 269, 372 (2002)
  40. Yang TH, Jung YK, Kang HO, Kim TW, Park SJ, Lee SY, Appl. Microbiol. Biotechnol., 90(2), 603 (2011)
  41. Jung YK, Lee SY, J.Biotechnol., 151, 94 (2011)
  42. Park SJ, Lee TW, Lim SC, Kim TW, Lee H, Kim MK, Lee SH, Song BK, Lee SY, Appl. Microbiol. Biotechnol., 93(1), 273 (2012)
  43. Park SJ, Kang KH, Lee H, Park AR, Yang JE, Oh YH, Song BK, Jegal J, Lee SH, Lee SY, J. Biotechnol., 165, 93 (2013)
  44. Park SJ, Lee SY, Kim TW, Jung YK, Yang TH, Biotechnol. J., 7, 199 (2012)
  45. Park SJ, Jang JA, Lee H, Park AR, Yang JE, Shin J, Oh Y H, Song BK, Jegal J, Lee SH, Lee SY, Metab. Eng., 20, 20 (2013)
  46. Yang JE, Choi SY, Shin JH, Park SJ, Lee SY, Microb. Biotechnol., 6, 621 (2013)