화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.3, 858-869, May, 2014
Sorption-enhanced Fischer-Tropsch synthesis with continuous adsorbent regeneration in GTL technology: Modeling and optimization
E-mail:
Fischer-Tropsch synthesis (FTS) plays an important role in the production of clean liquid transportation fuels, chemicals, and other hydrocarbon products. This work proposes a novel configuration of FTS reactor in which zeolite 4A, with the composition of Na12(Si12Al12O48)·27H2O, is considered as water adsorbent. For this purpose, a gas-flowing solids-fixed bed reactor (GFSFBR) is used instead of conventional reactor. The main advantage of GFSFBR over the conventional sorption-enhanced reaction process is the continuous adsorbent regeneration in this novel configuration. Simulation result demonstrates that selective adsorption of water from FTS in GFSFBR leads to significant enhancement in the gasoline yield and reduction in CO2 production in comparison with the zero solid mass flux condition. Subsequently, the aforementioned reactor is optimized using differential evolution (DE) algorithm as an effective and robust optimization method. Optimization results show that there are optimum values for eight decision variables under which the highest gasoline productivity can be achieved. Afterwards, the simulation and optimization results are compared with the ones in conventional reactor. This paper shows how the concept of in situ water adsorption is feasible and beneficial for FTS.
  1. Schulz H, Appl. Catal. A: Gen., 186(1-2), 3 (1999)
  2. Hall KR, Catal. Today, 106(1-4), 243 (2005)
  3. O'Shea VAD, Alvarez-Galvan MC, Campos-Martin JM, Fierro JLG, Appl. Catal. A: Gen., 326(1), 65 (2007)
  4. Akhtar A, Pareek VK, Tade MO, Chem. Prod. Process Model, 1, 1 (2006)
  5. Rohde MP, Schaub G, Khajavi S, Jansen JC, Kapteijn F, Microporous Mesoporous Mater., 115, 123 (2008)
  6. Khajavi S, Jansen JC, Kapteijn F, Catal. Today, 156(3-4), 132 (2010)
  7. Van der Laan GP, Kinetics, Selectivity and Scale Up of Fischer.Tropsch Synthesis, Dissertation, Rijks Universiteit, Groningen, 1999. (1999)
  8. Bartholomew CH, Farrauto RJ, Fundamentals of Industrial Catalytic Processes, John Wiley & Sons, New York, 2005. (2005)
  9. Rahimpour MR, Mirvakili A, Paymooni K, Energy, 36(2), 1223 (2011)
  10. Nowicki L, Ledakowicz S, Bukur DB, Chem. Eng. Sci., 56(3), 1175 (2001)
  11. Marvast MA, Sohrabi M, Zarrinpashne S, Baghmisheh G, Chem. Eng. Technol., 28(1), 78 (2005)
  12. Espinoza R, Du Toit amaria J, Menendez M, Coronas J, Irusta S, PCT Patent WO 99/64380, 1999. (1999)
  13. Espinoza RL, Du Toit E, Santamaria J, Menendez M, Coronas J, Irusta S, Stud. Surf. Sci. Catal., 130, 389 (2000)
  14. Unruh D, Rohde MP, Schaub G, Stud. Surf. Sci. Catal., 153, 17 (2004)
  15. Bayat M, Rahimpour MR, Moghtaderi B, J. Nat. Gas Sci. Eng., 3, 555 (2011)
  16. Bayat M, Rahimpour MR, J. Nat. Gas Sci. Eng., 9, 73 (2012)
  17. Roes AWM, Van Swaaij WMP, Chem. Eng. J., 17, 81 (1979)
  18. Nikacevic N, Dudukovic A, Chem. Ind. Chem. Eng. Q, 13, 151 (2007)
  19. Zhu W, Gora L, van den Berg AWC, Kapteijn F, Jansen JC, Moulijn JA, J. Membr. Sci., 253(1-2), 57 (2005)
  20. Timofeev DP, Kabanova ON, Izvestiya Akademii Nauk SSSR, Seriya Khamicheskaya, 15, 642 (1966)
  21. Directie Van De Staatsmijnen in Lumburg. French Patent 978287, 1948. (1948)
  22. Kuczynski N, Oyevaar MH, Piters RT, Wisterterp KR, Chem. Eng. Sci., 42, 1887 (1987)
  23. Westerterp KR, Bodewes TN, Vrijiland MS, Kuczynski MA, Int. Ed., 67, 69 (1988)
  24. Nikacevic N, Jovanovic M, Petkovska M, Chem. Eng. Res. Des., 89(4A), 398 (2011)
  25. Iliuta I, Iliuta MC, Larachi F, Chem. Eng. Sci., 66(10), 2241 (2011)
  26. Chang J, Bai L, Teng BT, Zhang RL, Yang J, Xu YY, Xiang HW, Li YW, Chem. Eng. Sci., 62(18-20), 4983 (2007)
  27. Shen WJ, Zhou JL, Zhang BJ, J. Nat. Gas Chem., 4, 385 (1994)
  28. Lox ES, Froment GF, Ind. Eng. Chem. Res., 32, 71 (1993)
  29. Lox ES, Froment GF, Ind. Eng. Chem. Res., 32, 61 (1993)
  30. Fischer-Tropsch pilot plant of Research Institute of Petroleum Industry and National Iranian Oil Company (RIPI-NIOC), Tehran 18745-4163, Iran, 2004. (2004)
  31. Wang YN, Xu YY, Xiang HW, Li YW, Zhang BJ, Ind. Eng. Chem. Res., 40(20), 4324 (2001)
  32. Montazer-Rahmati, Mehdi M, Bargah-Soleimani M, Can. J. Chem. Eng., 79(5), 800 (2001)
  33. Rahimpour MR, Elekaei H, Chem. Eng. J., 152(2-3), 543 (2009)
  34. Rahimpour MR, Elekaei H, Fuel Process. Technol., 90(6), 747 (2009)
  35. Graaf GH, Scholtens H, Stamhuis EJ, Beenackers AACM, Chem. Eng. Sci., 45, 773 (1990)
  36. Ranz WE, Marshall WR, Chem. Eng. Prog., 48, 173 (1952)
  37. Do DD, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, UK, 1998. (1998)
  38. Perry RH, Green DW, Maloney JO, Perry’s Chemical Engineers’ Handbook, seventh ed., McGraw-Hill, New York, 1997. (1997)
  39. Cussler EL, Diffusion-Mass Transfer in Fluid Systems, Cambridge University Press, Cambridge, 1984. (1984)
  40. Wilke CR, Chem. Eng. Prog., 45, 218 (1949)
  41. Reid RC, Sherwood TK, Prausnitz J, The Properties of Gases and Liquids, third ed., McGraw-Hill, New York, 1977. (1977)
  42. Smith JM, Chemical Engineering Kinetics, McGraw-Hill, New York, 1980. (1980)
  43. Tather M, Senatalar AE, Microporous Mesoporous Mater., 34, 23 (2000)
  44. Dudukovic AP, Nikacevic NM, Petrovic DL, Predojevic ZJ, Ind. Eng. Chem. Res., 42(12), 2530 (2003)
  45. Rangaiah GP, Multi-Objective Optimization: Techniques and Applications in Chemical Engineering (Advances in Process Systems Engineering), National University of Singapore, Singapore, 2008. (2008)
  46. Farsi M, Khademi MH, Jahanmiri A, Rahimpour MR, Int. J. Hydrog. Energy, 36, 299 (2010)
  47. Price K, Storn R, Dr. Dobb’s J. (1997) 18. (1997)