화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.3, 925-929, May, 2014
Preparation of nanostructure CuO/ZnO mixed oxide by sol.gel thermal decomposition of a CuCO3 and ZnCO3: TG, DTG, XRD, FESEM and DRS investigations
E-mail:
Nanostructure CuO/ZnO mixed oxide was systematically prepared via the sol.gel route using zinc and copper carbonates as precursors (molar ratio of 2:1) under thermal decomposition. The zinc and copper carbonates precursors have been synthesized by a simple chemical reaction in high yield and characterized by its melting point, FT-IR and thermal analysis (TG/DTG). The TG/DTG analysis proved that the thermal decomposition of zinc and copper carbonates precursors at 255 ℃ and 289 ℃ respectively. Thermo-gravimetric analysis (TG-DTG), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance spectroscopy (DRS) studies were undertaken to investigate the thermal properties and electronic structure of the CuO/ZnO mixed oxide catalysts. XRD data of the samples proved the formation of the nano-crystalline CuO/ZnO mixed oxide. Scanning electron microscopy (SEM) showed that the spherical-like particles have a diameter in the range 35.45 nm. Optical spectra of the nanostructure show a band peaked at 1.35 eV which is associated to near band gap transitions of CuO and a band centered at about 3.00 eV related to band gap transitions of ZnO nanostructures.
  1. Habibi MH, Sheibani R, J. Ind. Eng. Chem., 19(1), 161 (2013)
  2. Habibi MH, Habibi AH, J. Ind. Eng. Chem., http://dx.doi.org/10.1016/j.jiec.2013.04.025. (2013)
  3. Habibi MH, Askari E, J. Ind. Eng. Chem., 19(4), 1400 (2013)
  4. Xu C, Cao LX, Su G, Liu W, Liu H, Yu YQ, Qu XF, J. Hazard. Mater., 176(1-3), 807 (2010)
  5. Zhou K, Wang R, Xu B, Li Y, Nanotechnology, 17, 3939 (2006)
  6. Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY, J. Phys. Chem. B, 108(18), 5547 (2004)
  7. Bennici S, Gervasini A, Appl. Catal. B: Environ., 62(3-4), 336 (2006)
  8. Colak SC, Birdogan S, Aral E, Kilic G, Int. J. Hydrog. Energy, 34(12), 5196 (2009)
  9. Velu S, Suzuki K, Gopinath CS, Yoshida H, Hattori T, Phys. Chem. Chem. Phys., 4, 1990 (2002)
  10. Wn JG, Saito M, J. Cat, 195(2), 420 (2000)
  11. Suh YW, Moon SH, Rhee HK, Catal. Today, 63(2-4), 447 (2000)
  12. Cun W, Jincai Z, Xinming W, Bixian M, Guoying S, An PP, Jiamo F, Appl. Catal. B: Environ., 39, 269 (2002)
  13. Gopidas KR, Bohorquez M, Kamat PV, J. Phys. Chem., 94, 6435 (1990)
  14. Long M, Cai WM, Cai J, Zhou BX, Chai XY, Wu YH, J. Phys. Chem. B, 110(41), 20211 (2006)
  15. Ghaedi M, Montazerozohori M, Sahraei R, J. Ind. Eng. Chem., 19(4), 1356 (2013)
  16. Li G, Dimitrijevic NM, Chen L, Rajh T, Gray KA, J. Phys. Chem. C, 112, 19040 (2008)
  17. He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B, Chem. Mater., 15, 4039 (2003)
  18. Marci G, Augugliaro V, Lopez-Munoz MJ, Martin C, Palmisano L, Rives V, Schiavello M, Tilley RJD, Venezia AM, J. Phys. Chem. B, 105(5), 1026 (2001)
  19. Bandara J, Kuruppu SS, Pradeep UW, Colloids Surf. A: Physicochem. Eng. Asp., 276, 197 (2006)
  20. Zheng LR, Zheng YH, Chen CQ, Zhan YY, Lin XY, Zheng Q, Wei KM, Zhu JF, Inorg. Chem., 48(5), 1819 (2009)
  21. Pollard AM, Spencer MS, Thomas RG, Williams PA, Appl. Catal. A: Gen., 85, 1 (1992)
  22. Kniep BL, Ressler T, Rabis A, Girgsdies F, Baenitz M, Steglich F, Schloegl R, Angew, 43, 112 (2004)
  23. Kim SJ, Na CW, Hwang IS, Lee JH, Sens. Actuators B-Chem., 168, 83 (2012)
  24. Lee JH, Sens. Actuators B-Chem., 140, 319 (2009)
  25. Fang D, Zhongmin L, Shuanghe M, Ligang W, Lei X, Hua W, J. Nat. Gas Chem., 14, 107 (2005)
  26. He LM, Cheng HY, Liang GF, Yu YC, Zhao FY, Appl. Catal. A: Gen., 452, 88 (2013)
  27. Fu W, Bao ZH, Ding WZ, Chou KC, Li QA, Catal. Commun., 12, 505 (2011)
  28. Wang XB, Huang LN, Transactions of Nonferrous Metals Society of China, 19, S480 (2009)
  29. Frost RL, Martens WN, Wain DL, Hales MC, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 70, 1120 (2008)
  30. Wang TX, Xu SH, Yang FX, Powder Technol., 228, 128 (2012)
  31. Aimable A, Puentes AT, Bowen P, Powder Technol., 208(2), 467 (2011)
  32. Vaseem M, Umar SHA, Kim A, Al-Hajry YB, Mater. Lett., 62, 1659 (2008)
  33. Faisal M, Khan SB, Rahman MM, Jamal A, Umar A, Mater. Lett., 65, 1400 (2011)
  34. Bakhtiari F, Darezereshki E, Mater. Lett., 65, 171 (2011)
  35. Zhang YC, Tang JY, Wang GL, Zhang M, Hu XY, J. Cryst. Growth, 294(2), 278 (2006)
  36. Habibi MH, Askari E, Synth. Reactivityin Inorganic Metal-Organic Chem., 43, 406 (2013)
  37. Xu C, Cao LX, Su G, Liu W, Liu H, Yu YQ, Qu XF, J. Hazard. Mater., 176(1-3), 807 (2010)
  38. Wijesundera RP, Semicond. Sci. Technol., 25, 45015 (2010)
  39. Duan ZQ, Du Pasquier A, Lu YC, Xu Y, Garfunkel E, Sol. Energy Mater. Sol. Cells, 96(1), 292 (2012)
  40. Liu Z, Bai H, Sun DD, Int. J. Photoenergy, http://dx.doi.org/10.1155/2012/804840 (2012)
  41. Chen CC, Chen LC, Lee YH, Adv. Cond. Matter Phys., http://dx.doi.org/10.1155/2012/129139 (2012)
  42. Supakosl B, Mekla V, Raksapha C, Adv. Mater., 634, 2160 (2013)
  43. Zhang QF, Chou TR, Russo B, Jenekhe SA, Cao GZ, Angew. Chem.-Int. Edit., 47, 2402 (2008)
  44. Xi JT, Zhang QF, Xie SH, Yodyingyong S, Park K, Sun YM, Li JY, Cao GZ, Nanotechnology, 3, 690 (2011)
  45. Lu XH, Zheng YZ, Zhao JX, Chen JF, Tao X, Electrochim. Acta, 90, 649 (2013)
  46. Zainelabdin A, Zaman S, Amin G, Nur O, Willander M, Appl. Phys. A-Mater. Sci. Process., 4(108), 921 (2012)
  47. Yung KC, Liem H, Choy HS, J. Phys. D-Appl. Phys., 42, 185002 (2009)