Journal of Industrial and Engineering Chemistry, Vol.20, No.3, 925-929, May, 2014
Preparation of nanostructure CuO/ZnO mixed oxide by sol.gel thermal decomposition of a CuCO3 and ZnCO3: TG, DTG, XRD, FESEM and DRS investigations
E-mail:
Nanostructure CuO/ZnO mixed oxide was systematically prepared via the sol.gel route using zinc and copper carbonates as precursors (molar ratio of 2:1) under thermal decomposition. The zinc and copper carbonates precursors have been synthesized by a simple chemical reaction in high yield and characterized by its melting point, FT-IR and thermal analysis (TG/DTG). The TG/DTG analysis proved that the thermal decomposition of zinc and copper carbonates precursors at 255 ℃ and 289 ℃ respectively. Thermo-gravimetric analysis (TG-DTG), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectance spectroscopy (DRS) studies were undertaken to investigate the thermal properties and electronic structure of the CuO/ZnO mixed oxide catalysts. XRD data of the samples proved the formation of the nano-crystalline CuO/ZnO mixed oxide. Scanning electron microscopy (SEM) showed that the spherical-like particles have a diameter in the range 35.45 nm. Optical spectra of the nanostructure show a band peaked at 1.35 eV which is associated to near band gap transitions of CuO and a band centered at about 3.00 eV related to band gap transitions of ZnO nanostructures.
- Habibi MH, Sheibani R, J. Ind. Eng. Chem., 19(1), 161 (2013)
- Habibi MH, Habibi AH, J. Ind. Eng. Chem., http://dx.doi.org/10.1016/j.jiec.2013.04.025. (2013)
- Habibi MH, Askari E, J. Ind. Eng. Chem., 19(4), 1400 (2013)
- Xu C, Cao LX, Su G, Liu W, Liu H, Yu YQ, Qu XF, J. Hazard. Mater., 176(1-3), 807 (2010)
- Zhou K, Wang R, Xu B, Li Y, Nanotechnology, 17, 3939 (2006)
- Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY, J. Phys. Chem. B, 108(18), 5547 (2004)
- Bennici S, Gervasini A, Appl. Catal. B: Environ., 62(3-4), 336 (2006)
- Colak SC, Birdogan S, Aral E, Kilic G, Int. J. Hydrog. Energy, 34(12), 5196 (2009)
- Velu S, Suzuki K, Gopinath CS, Yoshida H, Hattori T, Phys. Chem. Chem. Phys., 4, 1990 (2002)
- Wn JG, Saito M, J. Cat, 195(2), 420 (2000)
- Suh YW, Moon SH, Rhee HK, Catal. Today, 63(2-4), 447 (2000)
- Cun W, Jincai Z, Xinming W, Bixian M, Guoying S, An PP, Jiamo F, Appl. Catal. B: Environ., 39, 269 (2002)
- Gopidas KR, Bohorquez M, Kamat PV, J. Phys. Chem., 94, 6435 (1990)
- Long M, Cai WM, Cai J, Zhou BX, Chai XY, Wu YH, J. Phys. Chem. B, 110(41), 20211 (2006)
- Ghaedi M, Montazerozohori M, Sahraei R, J. Ind. Eng. Chem., 19(4), 1356 (2013)
- Li G, Dimitrijevic NM, Chen L, Rajh T, Gray KA, J. Phys. Chem. C, 112, 19040 (2008)
- He Y, Wu Z, Fu L, Li C, Miao Y, Cao L, Fan H, Zou B, Chem. Mater., 15, 4039 (2003)
- Marci G, Augugliaro V, Lopez-Munoz MJ, Martin C, Palmisano L, Rives V, Schiavello M, Tilley RJD, Venezia AM, J. Phys. Chem. B, 105(5), 1026 (2001)
- Bandara J, Kuruppu SS, Pradeep UW, Colloids Surf. A: Physicochem. Eng. Asp., 276, 197 (2006)
- Zheng LR, Zheng YH, Chen CQ, Zhan YY, Lin XY, Zheng Q, Wei KM, Zhu JF, Inorg. Chem., 48(5), 1819 (2009)
- Pollard AM, Spencer MS, Thomas RG, Williams PA, Appl. Catal. A: Gen., 85, 1 (1992)
- Kniep BL, Ressler T, Rabis A, Girgsdies F, Baenitz M, Steglich F, Schloegl R, Angew, 43, 112 (2004)
- Kim SJ, Na CW, Hwang IS, Lee JH, Sens. Actuators B-Chem., 168, 83 (2012)
- Lee JH, Sens. Actuators B-Chem., 140, 319 (2009)
- Fang D, Zhongmin L, Shuanghe M, Ligang W, Lei X, Hua W, J. Nat. Gas Chem., 14, 107 (2005)
- He LM, Cheng HY, Liang GF, Yu YC, Zhao FY, Appl. Catal. A: Gen., 452, 88 (2013)
- Fu W, Bao ZH, Ding WZ, Chou KC, Li QA, Catal. Commun., 12, 505 (2011)
- Wang XB, Huang LN, Transactions of Nonferrous Metals Society of China, 19, S480 (2009)
- Frost RL, Martens WN, Wain DL, Hales MC, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 70, 1120 (2008)
- Wang TX, Xu SH, Yang FX, Powder Technol., 228, 128 (2012)
- Aimable A, Puentes AT, Bowen P, Powder Technol., 208(2), 467 (2011)
- Vaseem M, Umar SHA, Kim A, Al-Hajry YB, Mater. Lett., 62, 1659 (2008)
- Faisal M, Khan SB, Rahman MM, Jamal A, Umar A, Mater. Lett., 65, 1400 (2011)
- Bakhtiari F, Darezereshki E, Mater. Lett., 65, 171 (2011)
- Zhang YC, Tang JY, Wang GL, Zhang M, Hu XY, J. Cryst. Growth, 294(2), 278 (2006)
- Habibi MH, Askari E, Synth. Reactivityin Inorganic Metal-Organic Chem., 43, 406 (2013)
- Xu C, Cao LX, Su G, Liu W, Liu H, Yu YQ, Qu XF, J. Hazard. Mater., 176(1-3), 807 (2010)
- Wijesundera RP, Semicond. Sci. Technol., 25, 45015 (2010)
- Duan ZQ, Du Pasquier A, Lu YC, Xu Y, Garfunkel E, Sol. Energy Mater. Sol. Cells, 96(1), 292 (2012)
- Liu Z, Bai H, Sun DD, Int. J. Photoenergy, http://dx.doi.org/10.1155/2012/804840 (2012)
- Chen CC, Chen LC, Lee YH, Adv. Cond. Matter Phys., http://dx.doi.org/10.1155/2012/129139 (2012)
- Supakosl B, Mekla V, Raksapha C, Adv. Mater., 634, 2160 (2013)
- Zhang QF, Chou TR, Russo B, Jenekhe SA, Cao GZ, Angew. Chem.-Int. Edit., 47, 2402 (2008)
- Xi JT, Zhang QF, Xie SH, Yodyingyong S, Park K, Sun YM, Li JY, Cao GZ, Nanotechnology, 3, 690 (2011)
- Lu XH, Zheng YZ, Zhao JX, Chen JF, Tao X, Electrochim. Acta, 90, 649 (2013)
- Zainelabdin A, Zaman S, Amin G, Nur O, Willander M, Appl. Phys. A-Mater. Sci. Process., 4(108), 921 (2012)
- Yung KC, Liem H, Choy HS, J. Phys. D-Appl. Phys., 42, 185002 (2009)