화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.7, 1148-1161, July, 2014
Computational fluid dynamics simulations of interphase heat transfer in a bubbling fluidized bed
E-mail:
Numerical simulations based on the Eulerian-Eulerian approach have been performed in the study of interphase heat transfer in a gas solid fluidized bed. The kinetic theory of granular flow (KTGF) has been used to describe the solid phase rheology. An assessment of drag models in the prediction of heat transfer coefficients shows that no major difference is observed in the choice of the drag model used. Fluctuations of the interphase heat transfer coefficient have been found to be closely related to the bubble motion in the bed. Effects of the wall boundary condition, inlet gas velocity, initial bed height and particle size on the predicted heat transfer coefficient have also been investigated. Typical temperature profiles in the bed show that thermal saturation is attained instantaneously close to the gas distributor. Simulated results of the coefficients are in fair agreement with those reported in literature.
  1. Mickley HS, Fairbanks DF, AIChE J., 1, 374 (1955)
  2. Brodkey RS, Kim DS, Sidner W, Int. J. Heat Mass Transfer, 34, 2327 (1991)
  3. Figliola RS, Beasley DE, Chem. Eng. Sci., 48, 2901 (1993)
  4. Yusuf R, Halvorsen B, Melaaen MC, Int. J. Multiphase Flow, 42, 9 (2012)
  5. Kuipers J, Prins W, Swaaij W, AIChE J., 38, 1079 (1992)
  6. Syamlal M, Gidaspow D, AIChE J., 31, 127 (1985)
  7. Patil DJ, Smit J, Annaland MV, Kuipers JAM, AIChE J., 52(1), 58 (2006)
  8. Armstrong LM, Gu S, Luo KH, Int. J. Heat Mass Transf., 53(21-22), 4949 (2010)
  9. Delvosalle C, Vanderschuren J, Chem. Eng. Sci., 40, 769 (1985)
  10. Chang J, Wang G, Gao J, Zhang K, Chen H, Yang Y, Powder Technol., 217, 50 (2012)
  11. Yang YR, Yang JQ, Chen W, Rong SX, Ind. Eng. Chem. Res., 41(10), 2579 (2002)
  12. Kunii D, Levenspiel O, Fluidization engineering, Butterworth-Heinemann Boston (1991)
  13. Kaneko Y, Shiojima T, Horio M, Chem. Eng. Sci., 54(24), 5809 (1999)
  14. Behjat Y, Shahhosseini S, Hashemabadi SH, International Communications in Heat and Mass Transfer, 35, 357 (2008)
  15. Hamzehei M, Rahimzadeh H, Ahmadi G, Ind. Eng. Chem. Res., 49(11), 5110 (2010)
  16. Chen XZ, Luo ZH, Yan WC, Lu YH, Ng IS, AIChE J., 57(12), 3351 (2011)
  17. Syamlal M, O’Brien TJ, AIChE Symposium Series, 85, 22 (1989)
  18. Syamlal M, O’Brien TJ, The derivation of a drag coefficient formula from velocity-voidage correlations, US Department of Energy, Morgantown (1987)
  19. Gidaspow D, Multiphase flow and fluidization: Continuum and kinetic theory descriptions, Academic Press (1994)
  20. Cao J, Ahmadi G, Int. J. Multiph. Flow, 21(6), 1203 (1995)
  21. Benyahia S, Syamlal M, O'Brien TJ, Powder Technol., 162(2), 166 (2006)
  22. Lun C, Savage S, Jeffrey D, Chepurniy N, J. Fluid Mech., 140, 223 (1984)
  23. Schaeffer DG, Journal of Differential Equations, 66, 19 (1987)
  24. Ma D, Ahmadi G, J. Chem. Phys., 84, 3449 (1986)
  25. Gunn D, Int. J. Heat Mass Transfer, 21, 467 (1978)
  26. Ranz W, Marshall W, Chem. Eng. Prog., 48, 141 (1952)
  27. Wakao N, Kaguei S, Funazkri T, Chem. Eng. Sci., 34, 325 (1979)
  28. Cybulski A, Van Dalen MJ, Verkerk JW, Van Den Berg PJ, Chem. Eng. Sci., 30, 1015 (1975)
  29. Nelson PA, Galloway TR, Chem. Eng. Sci., 30, 1 (1975)
  30. Bird B, Stewart W, Lightfoot E, Transport phenomena, revised 2nd Ed., John Wiley & Sons, Inc. (2006)
  31. Deen NG, Kriebitzsch SHL, Van der Hoef MA, Kuipers JAM, Chem. Eng. Sci., 81, 329 (2012)
  32. Sun JY, Zhou YF, Ren CJ, Wang JD, Yang YR, Chem. Eng. Sci., 66(21), 4972 (2011)
  33. Taghipour F, Ellis N, Wong C, Chem. Eng. Sci., 60(24), 6857 (2005)
  34. Johnson P, Jackson R, J. Fluid Mech., 176, 67 (1987)
  35. Li TW, Grace J, Bi XT, Powder Technol., 203(3), 447 (2010)
  36. Yusuf R, Melaaen MC, Mathiesen V, Chem. Eng. Technol., 28(1), 13 (2005)
  37. Cloete S, Johansen ST, Amini S, Powder Technol., 239, 21 (2013)
  38. Loha C, Chattopadhyay H, Chatterjee PK, Chem. Eng. Sci., 75, 400 (2012)
  39. Vejahati F, Mahinpey N, Ellis N, Nikoo MB, Can. J. Chem. Eng., 87(1), 19 (2009)
  40. Armstrong LM, Gu S, Luo KH, Int. J. Multiphase Flow, 36, 916 (2010)
  41. Grace JR, Powder Technol., 113(3), 242 (2000)
  42. Botterill JSM, Fluid-bed heat transfer: Gas-fluidized bed behaviour and its influence on bed thermal properties, Academic Press, London (1975)
  43. Loha C, Chattopadhyay H, Chatterjee PK, Particuology, 11, 673 (2013)
  44. Tuot J, Clift R, AIChE Symp. Ser., 78 (1973)
  45. Jaiboon Oa, Chalermsinsuwan B, Mekasut L, Piumsomboon P, Powder Technol., 233, 215 (2013)
  46. Baskakov AP, Tuponogov VG, Filippovsky NF, Powder Technol., 45, 113 (1986)
  47. Olaofe OO, van der Hoef MA, Kuipers JAM, Chem. Eng. Sci., 66(12), 2764 (2011)
  48. Chen XZ, Shi DP, Gao X, Luo ZH, Powder Technol., 205(1-3), 276 (2011)
  49. Wang JD, Ren CJ, Yang YR, Hou LX, Ind. Eng. Chem. Res., 48(18), 8508 (2009)
  50. Cloete S, Johansen ST, Amini S, Powder Technol., 239, 21 (2013)
  51. DeChellis ML, Griffin JR, Muhle ME, US Patent, 5,405,922 (1995)
  52. Van Heerden C, Nobel A, Van Krevelen D, Ind. Eng. Chem., 45, 1237 (1953)
  53. Hill RJ, Koch DL, Ladd AJ, J. Fluid Mech., 448, 213 (2001)
  54. Hill RJ, Koch DL, Ladd AJ, J. Fluid Mech., 448, 243 (2001)
  55. Ma D, Ahmadi G, J. Chem. Phys., 84, 3449 (1986)