화학공학소재연구정보센터
Clean Technology, Vol.20, No.2, 103-107, June, 2014
아민계 추출제에 의한 아크릴산의 추출 평형
Extraction Equilibria of Acrylic Acid with Amine Extractants
E-mail:
초록
각종 고분자 화합물과 섬유산업에 응용되어왔던 아크릴산은 지금까지 화석원료를 이용하여 생산되어 왔다. 그러나 최근 화석원료의 가격 불안정성과 화석연료 유래 제품의 전주기에 걸친 온실가스 배출로 인해 재생 가능한 바이오매스로부터 아크릴산을 생산하는 공정에 관심이 높아지고 있다. 재생 가능한 탄소원으로부터 경제적으로 아크릴산을 생산하기 위해서는 효율적인 분리공정 개발이 필수적이다. 본 연구에서는 수용액 내의 아크릴산을 추출하기 위해 3차 아민추출제인 TOA를 사용하여 반응추출을 실시하였다. 각종 변수들이 추출능에 미치는 영향을 알아보고자 희석제의 극성과 TOA의 농도, 수용상에 서 아크릴산의 농도에 변화를 주며 실험을 진행하였다. 아크릴산의 추출능은 TOA의 농도와, 알콜의 극성에 비례하였으며 최대 추출능은 95% 이상인 것으로 나타났다. 추출 후 산과 아민의 복합체의 형성을 확인하기 위해 적외선분광법을 실시하였고, 적외선분광법을 바탕으로 평형모델 식을 세워 추출평형 데이터를 해석하였다. 적외선분광법을 통하여 TOA의 농도가 높아질수록 (1, 1) 복합체의 비율이 증가하는 반면 아크릴산 이합체의 비율이 감소하는 것을 확인하였으며 이를 바탕으로 수립된 평형모델은 평형데이터를 잘 모사하였다.
Acrylic acid is a commodity chemical which is applicable for various industries such as polymer and textile industry. Currently, it has been produced by chemical synthesis from petroleum. However, due to the high price of petroleum and global CO2 emission, renewable materials such as sugar are interesting alternative carbon sources for the biological production of acrylic acid. For an economic production of acrylic acid from renewable carbon sources, a cost effective separation process for acrylic acid should be needed. In this study, reactive extraction by TOA (tri-n-octylamine) was used for the recovery of acrylic acid from its aqueous solutions. The effects of polarity of diluents and concentration of TOA on extraction equilibrium were investigated. The extraction efficiency was proportional to concentration of TOA and polarity of diluents and its value was more than 95% in the case of sufficient concentration of TOA. From IR spectroscopy, it was concluded that the ratio of (1,1) acid-amine complex was increased and the ratio of acid dimer was decreased with concentration of TOA. Equilibrium model based on IR spectroscopy was well fitted with experimental data.
  1. Asci YS, Inci I, J. Chem. Eng. Data, 55(7), 2385 (2010)
  2. Keshav A, Chand S, Wasewar KL, J. Chem. Eng. Data, 54(6), 1782 (2009)
  3. Straathof AJJ, Sie S, Franco TT, van der Wielen LAM, Appl. Microbiol. Biotechnol., 67(6), 727 (2005)
  4. Hong YK, Hong WH, Biopro. Eng., 22, 281 (2000)
  5. Hong YK, Hong WH, Biotechnol. Technol., 13, 915 (1999)
  6. Kurzrock T, Weuster-Botz D, Bioprocess Biosyst. Eng., 34, 779 (2011)
  7. Kertes AS, King CJ, Biotechnol. Bioeng., 28, 269 (1986)
  8. Tamada JA, King CJ, Ind. Eng. Chem. Res., 29, 1327 (1990)
  9. Hong YK, Hong WH, Korean J. Chem. Eng., 21(2), 488 (2004)
  10. Hong YK, Hong WH, Sep. Purif. Technol., 42(2), 151 (2005)