Macromolecular Research, Vol.22, No.6, 624-631, June, 2014
Rheological and Thermal Properties of Polyamide 6 and Polyamide 6/Glass Fiber Composite with Repeated Extrusion
E-mail:
In this study, the rheological, mechanical, and thermal properties of polyamide 6 (PA6) and PA6/glass fiber (GF) composite with repeated extrusions were investigated. The complex viscosity of the PA6 was found to decrease with the increase of repeated extrusion. The decrease in complex viscosity was due to the decrease in the molecular weights of the PA6. The decrease in tensile strength of the PA6(GF) was due to the continuous chopping of the glass fibers with repeated extrusion, as well as the decrease in molecular weight of the PA6. The half crystallization time of the PA6 and PA6(GF) decreased, with the increase of repeated extrusion. The fraction of the 1-time repeated extrusion of the PA6 (PA6-A) in the PA6/PA6-A blend was obtained from the ratio of the complex viscosity of the PA6-A blend, and the complex viscosity of the PA6. A rheological method is presented that can estimate the fraction of the repeated extrusion of the polymer from the virgin polymer/repeated extrusion of the polymer mixtures.
- Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE, Chemosphere, 73, 429 (2008)
- Yabar H, Uwasu M, Hara K, J. Clean. Prod., 44, 152 (2013)
- Bernardo CA, Cunha AM, Oliveira MJ, Polym. Eng. Sci., 36(4), 511 (1996)
- Kuram E, Tasci E, Altan AI, Medar MM, Yilmaz F, Ozcelik B, Mater. Des., 49, 139 (2013)
- Pedroso AG, Rosa DS, Carbohydr. Polym., 59, 1 (2005)
- Aurrekoetxea J, Sarrionandia MA, Urrutibeascoa I, Maspoch ML, J. Mater. Sci., 36(21), 5073 (2001)
- Martin-Gullon I, Esperanza M, Font R, J. Anal. Appl. Pyrolysis, 58, 635 (2001)
- Dostal J, Kasparkova V, Zatloukal M, Muras J, Simek L, Eur. Polym. J., 44, 2652 (2008)
- Boldizar A, Jansson A, Gevert T, Moller K, Polym. Degrad. Stab., 68, 317 (2000)
- Bahlouli N, Pessey D, Raveyre C, Guillet J, Ahzi S, Dahoun A, Hiver JM, Mater. Des., 33, 451 (2012)
- Klitkou R, Jensen EA, Christiansen JD, J. Appl. Polym. Sci., 126(2), 620 (2012)
- Rogueda-Berriet C, Bahlouli N, Pessey D, Remond Y, J. Eng. Mater. Technol., 133, 030907 (2011)
- Sung YT, Seo WJ, Kim JS, Kim WN, Kwak DH, Hwang TW, Korea-Aust. Rheol. J., 17(1), 21 (2005)
- Lee DW, Ma S, Lee KY, Macromol. Res., 21(7), 767 (2013)
- Park DH, Kim MS, Yang JH, Lee DJ, Kim KN, Macromol. Res., 19(2), 105 (2011)
- Yarahmadi N, Jakubowicz I, Gevert T, Polym. Degrad. Stab., 73, 93 (2001)
- Remili C, Kaci M, Benhamida A, Bruzaud S, Grohens Y, Polym. Degrad. Stab., 96, 1489 (2011)
- Hwang TY, Lee S, Yoo Y, Jang K, Lee JW, Macromol. Res., 20(6), 559 (2012)
- Lee KH, Ryu SW, Macromol. Res., 20(12), 1294 (2012)
- Crespo JE, Parres F, Peydro MA, Navarro R, Polym. Eng. Sci., 53(4), 679 (2013)
- Su KH, Lin JH, Lin CC, J. Mater. Proc. Technol., 192, 532 (2007)
- Mun SC, Kim M, Lee CS, Lee MH, Son Y, Park OO, Macromol. Res., 21(4), 356 (2013)
- Dimitrov N, Krehula LK, Sirocic AP, Hrnjak-Murgic Z, Polym. Degrad. Stab., 98, 972 (2013)
- Milana MR, Denaro M, Arrivabene L, Maggio A, Gramiccioni L, Food Addit. Contam., 15, 355 (1998)
- Karahaliou EK, Tarantili PA, Polym. Eng. Sci., 49(11), 2269 (2009)
- Boldizar A, Moller K, Polym. Degrad. Stab., 81, 359 (2003)
- Yoo SJ, Lee SH, Jeon M, Lee HS, Kim WN, Macromol. Res., 21(11), 1182 (2013)
- Im H, Roh SC, Kim CK, Macromol. Res., 21(6), 614 (2013)
- Paukszta D, Borysiak S, Polimery, 54, 126 (2009)
- Lee YK, Lee HK, Yoo TW, Yoon HG, Kim WN, J. Appl. Polym. Sci., 127(2), 1416 (2013)
- Peon J, Vega JF, Aroca M, Martinez-Salazar J, Polymer, 42(19), 8093 (2001)
- Vega JF, Santamaria A, Munoz-Escalona A, Lafuente P, Macromolecules, 31(11), 3639 (1998)
- Van Krevelen DW, Te Nijenhuis K, Properties of Polymers, Elsevier, Amsterdam (2009)
- Mark JE, Ed., in Physical Properties of Polymers Handbook, American Institute of Physics Press, Woodbury, New York, Chap. 24 (1996)
- Avrami M, J. Chem. Phys., 8, 212 (1940)