화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.4, 1236-1242, July, 2014
Production of poorly crystalline tricalcium phosphate nanopowders using different mechanochemical reactions
E-mail:
Poorly crystalline nano-sized tricalcium phosphate powders were successfully synthesized by two distinct mechanochemical reactions. Results revealed that the structural features as well as morphological characteristics were influenced by the chemical composition of reagents. The obtained nanopowders exhibited average sizes about 21 and 28 nm. According to the TEM/SEM observations, the synthesized powders showed cluster-like structures composed of spheroidal particles with a mean size of about 23 nm and ellipsoidal particles with an average size of about 30 nm. The proposed method as a new vision in powder technology can be used for mass production of nanostructured tricalcium phosphates.
  1. Combes C, Rey C, Acta Biomaterialia, 6, 3362 (2010)
  2. Dunn WJ, AM. J. Orthodontics Dentofacial Orthopedics, 131, 243 (2007)
  3. Somrania S, Banub M, Jemalc M, Rey C, J. Solid State Chem., 178
  4. Dorozhkin SV, Acta Biomaterialia, 6, 4457 (2010)
  5. Lebugle A, Zahidi E, Bonel G, React. Sol., 2, 151 (1986)
  6. Layrolle P, Lebugle A, Chem. Mater., 6, 1996 (1994)
  7. Rodrigues A, Lebugle A, J. Solid State Chem., 148, 308 (1999)
  8. Heughebaert JC, Montel G, Calcif. Tissue Int., 34, S103 (1982)
  9. Madsen HEL, Valero IL, Acevedo VL, Boistelle R, J. Cryst. Growth, 75, 429 (1986)
  10. Eanes ED, Gillessen IH, Posner AS, Nature, 208, 365 (1965)
  11. Blumenthal NC, Posner AS, Mater. Res. Bull., 7, 1181 (1972)
  12. Harries JE, Hukins DWL, Holt C, Hasnain SS, J. Cryst. Growth, 84, 563 (1987)
  13. Eanes ED, Calcif. Tissue Int., 5, 133 (1970)
  14. Yu T, Ye J, Wang Y, J. Biomed. Mater. Res. Part B -Appl. Biomater., 90B, 745 (2009)
  15. Tofighi A, Palazzolo R, Key Eng. Mater., 284-286, 101 (2005)
  16. Gbureck U, Grolms O, Barralet JE, Grover LM, Thull R, Biomaterials, 24, 4123 (2003)
  17. Gbureck U, Barralet JE, Radu L, Klinger HG, Thull R, J. Am. Ceram. Soc., 87(6), 1126 (2004)
  18. Vaidya SN, Sugandhi V, J. Mater. Sci., 34(15), 3769 (1999)
  19. Rhee SH, Biomaterials, 23, 1147 (2002)
  20. Tabrizi BN, Fahami A, Kahrizsangi RE, Ceram. Int., 39, 5751 (2013)
  21. Fahami A, Nasiri-Tabrizi B, Ebrahimi-Kahrizsangi R, Ceram. Int., 38, 6729 (2012)
  22. Silva CC, Pinheiro AG, Miranda MAR, Goes JC, Sombra ASB, Solid State Sci., 5, 553 (2003)
  23. Boanini E, Gazzano M, Bigi A, Acta Biomaterialia, 6, 1882 (2010)
  24. Posner AS, Betts F, Accounts Chem. Res., 8, 273 (1975)
  25. Nasiri-Tabrizi B, Fahami A, Ceram. Int., 39, 4329 (2013)
  26. Landi E, Tampieri A, Celotti G, Sprio S, J. European Ceram. Soc., 20, 2377 (2000)
  27. Nakano T, Tokumura A, Umakoshi Y, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 33, 521 (2002)
  28. Sanosh KP, Chu MC, Balakrishnan A, Lee YJ, Kim TN, Cho SJ, Curr. Appl. Phys., 9(6), 1459 (2009)
  29. Nath S, Tripathi R, Basu B, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 29, 97 (2009)
  30. Cacciotti I, Bianco A, Ceram. Int., 37, 127 (2011)
  31. Lafon JP, Champion E, Bernache-Assollant D, J. European Ceram. Soc., 28, 139 (2008)
  32. Fathi MH, Zahrani EM, J. Cryst. Growth, 311(5), 1392 (2009)
  33. Suryanarayana C, Prog. Mater. Sci., 46(1-2), 1 (2001)
  34. Sun F, Froes FHS, J. Alloy. Compd., 340, 220 (2002)
  35. Nasiri-Tabrizi B, Fahami A, Ebrahimi-Kahrizsangi R, in: Mendez-Vilas A (Ed.), Characterization of Nanostructured Calcium Phosphate-based Bioceramics: TEM and SEM/FE-SEM Studies, Formatex, Spain, 2012, p. 1259.
  36. Nasiri-Tabrizi B, Honarmandi P, Ebrahimi-Kahrizsangi R, Honarmandi P, Mater. Lett., 63, 543 (2009)
  37. Balaz P, Mechanochemistry in Nanoscience and Minerals Engineering, 1st ed., Springer, Berlin/Heidelberg, 2008.