Journal of Industrial and Engineering Chemistry, Vol.20, No.4, 1462-1467, July, 2014
Preparation of nanostructure mixed copper-zinc oxide via co-precipitation rout for dye-sensitized solar cells: The influence of blocking layer and Co(II)/Co(III) complex redox shuttle
E-mail:
Mixed copper-zinc oxide nanostructures (average size 43 nm) were effectively fabricated via coprecipitation route. Field-emission scanning electron microscope (FESEM), powder X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR) and UV-vis diffuse reflectance spectrum (DRS) were used to characterize the properties of the oxides. At the optimized condition, copper-zinc oxide nanostructures were used for fabrication of working electrodes by doctor blade technique on the fluorine-doped tin oxide (FTO) in dye sensitized solar cells. Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)3](PF6)2, [Co(pby)3](PF6)3, LiClO4, and 4-tert-butylpyridine (TBP). The ranges of short-circuit current (Jsc) from 0.13 to 0.30 (mA/cm2), open-circuit voltage (Voc) from 0.20 to 0.51 V, and fill factor from 0.34 to 0.29 were obtained for the DSSCs made using the working electrodes. A titania blocking layer on the copper-zinc oxide surface improve both the open-circuit voltage (Voc), short-circuit current (Jsc) and the power-conversion efficiency is consequently enhanced by a factor of approximately five.
Keywords:Copper-zinc oxide nanostructure;Dye-sensitized solar cell (DSSC);Co-precipitation;Co(II)/Co(III) shuttle
- Regan BO, Gratzel M, Nature, 353, 737 (1991)
- Gratzel M, Nature, 414, 338 (2001)
- Yum JH, Baranoff E, Fl Kessler, Moehl T, Ahmad S, Bessho T, Marchioro A, Ghadiri E, Moser JE, Yi C, Nazeeruddin MK, Gratzel M, Nat. Commun., 3, 631 (2012)
- Gratzel M, Acc. Chem. Res., 42, 1788 (2009)
- Boschloo G, Hagfeldt A, Acc. Chem. Res., 42, 1819 (2009)
- Pelet S, Moser JE, Gratzel M, J. Phys. Chem. B, 104(8), 1791 (2000)
- Ahn SH, Chi WS, Kim DJ, Heo SY, Kim JH, Adv. Funct. Mater., http://dx.doi.org/10.1002/adfm.201203851 (2013)
- Mazumdar S, Bhattacharyya AJ, Energy Environ. Sci, http://dx.doi.org/10.1039/C3EE00120B (2013)
- Chen L, Zhou Y, Tu W, Li Z, Bao C, Dai H, Yu T, Liu J, Zou Z, Nanoscale, 5, 3481 (2013)
- Kamat PV, Acc. Chem. Res., 45, 1906 (2012)
- Yan LT, Wu FL, Peng L, Zhang LJ, Li PJ, Dou SY, Li TX, Int. J. Photoenergy, 613969 (2012)
- Habibi MH, Askari E, J. Therm. Anal. Calorim., 111, 227 (2013)
- Martinson ABF, Elam JW, Hupp JT, Pellin MJ, Nano Lett., 7, 2183 (2007)
- Habibi MH, Askari E, J. Adv. Oxid. Technol., 14, 190 (2011)
- Ghaedi M, Montazerozohori M, Sahraei R, J. Ind. Eng. Chem., 19(4), 1356 (2013)
- Habibi MH, Sheibani R, J. Ind. Eng. Chem., 19(1), 161 (2013)
- Habibi MH, Askari E, J. Ind. Eng. Chem., http://dx.doi.org/10.1016/j.jiec.2013.01.003 (2013)
- Chen W, Zhang H, Hsing IM, Yang S, Electrochem. Commun., 11, 1057 (2009)
- Habibi MH, Askari E, Synth. React. Inorg. Met.-Org. Chem., 43, 406 (2013)
- Zhang QF, Dandeneau CS, Zhou XY, Cao GZ, Adv. Mater., 21(41), 4087 (2009)
- Habibi MH, Habibi AH, J. Therm. Anal. Calorim., http://dx.doi.org/10.1007/s10973-012-2830-4. (2013)
- Habibi MH, Mikhak M, Zendehdel M, Habibi M, Int. J. Electrochem. Sci., 7, 6787 (2012)
- Habibi MH, Askari E, Habibi M, Zendehdel M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 104, 197 (2013)
- Habibi MH, Habibi AH, Zendehdel M, Habibi M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 110, 226 (2013)
- Habibi MH, Karimi B, Zendehdel M, Habibi M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., http://dx.doi.org/10.1016/j.saa.2013.07.046 (2013)
- Sapp SA, Elliott CM, Contado C, Caramori S, Bignozzi CA, J. Am. Chem. Soc., 124(37), 11215 (2002)
- Nusbaumer H, Zakeeruddin SM, Moser JE, Gratzel M, Chem. Eur. J., 9, 3756 (2003)
- Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A, J. Am. Chem. Soc., 132(46), 16714 (2010)
- Bai Y, Zhang J, Zhou DF, Wang YH, Zhang M, Wang P, J. Am. Chem. Soc., 133(30), 11442 (2011)
- Tsao HN, Yi C, Moehl T, Yum JH, ChemSusChem, 4, 591 (2011)
- Zhou D, Yu Q, Cai N, Bai Y, Wang Y, Wang P, Energy Environ. Sci., 4, 2030 (2011)
- Feldt, Wang SM, Boschloo G, Hagfeldt GA, J. Phys. Chem. C, 115, 21500 (2011)
- Hagberg DP, Jiang X, Gabrielsson E, Linder M, Marinado T, Brinck T, Hagfeldt A, Sun L, J. Mater. Chem., 19, 7232 (2009)
- Li B, Wang Y, Superlattices Microstruct., 47, 615 (2010)
- Liu ZL, Deng JC, Deng JJ, Li FF, Sci. Eng. B, 150, 99 (2008)
- Wang JX, Sun XW, Yang Y, Akyaw KK, Huang XY, Yin JZ, Wei J, Demir HV, Nanotechnology, 22, 325704 (2011)
- Liu M, Yang J, Feng S, Zhu H, Zhang J, Li G, Peng J, Mater. Lett., 76, 215 (2012)
- Khan AF, Mehmood M, Aslam M, Ashraf M, Appl. Surf. Sci., 256(7), 2252 (2010)
- Alpuche-Aviles MA, Wu YY, J. Am. Chem. Soc., 131(9), 3216 (2009)
- Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng YH, Appl. Catal. B: Environ., 68(1-2), 1 (2006)
- Zhang YP, Fei LF, Jiang XD, Pan CX, Wang Y, J. Am. Ceram. Soc., 94(12), 4157 (2011)
- Tauc J, Menth A, J. Non-Cryst. Solids, 8, 569 (1972)