화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.20, No.4, 1462-1467, July, 2014
Preparation of nanostructure mixed copper-zinc oxide via co-precipitation rout for dye-sensitized solar cells: The influence of blocking layer and Co(II)/Co(III) complex redox shuttle
E-mail:
Mixed copper-zinc oxide nanostructures (average size 43 nm) were effectively fabricated via coprecipitation route. Field-emission scanning electron microscope (FESEM), powder X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR) and UV-vis diffuse reflectance spectrum (DRS) were used to characterize the properties of the oxides. At the optimized condition, copper-zinc oxide nanostructures were used for fabrication of working electrodes by doctor blade technique on the fluorine-doped tin oxide (FTO) in dye sensitized solar cells. Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)3](PF6)2, [Co(pby)3](PF6)3, LiClO4, and 4-tert-butylpyridine (TBP). The ranges of short-circuit current (Jsc) from 0.13 to 0.30 (mA/cm2), open-circuit voltage (Voc) from 0.20 to 0.51 V, and fill factor from 0.34 to 0.29 were obtained for the DSSCs made using the working electrodes. A titania blocking layer on the copper-zinc oxide surface improve both the open-circuit voltage (Voc), short-circuit current (Jsc) and the power-conversion efficiency is consequently enhanced by a factor of approximately five.
  1. Regan BO, Gratzel M, Nature, 353, 737 (1991)
  2. Gratzel M, Nature, 414, 338 (2001)
  3. Yum JH, Baranoff E, Fl Kessler, Moehl T, Ahmad S, Bessho T, Marchioro A, Ghadiri E, Moser JE, Yi C, Nazeeruddin MK, Gratzel M, Nat. Commun., 3, 631 (2012)
  4. Gratzel M, Acc. Chem. Res., 42, 1788 (2009)
  5. Boschloo G, Hagfeldt A, Acc. Chem. Res., 42, 1819 (2009)
  6. Pelet S, Moser JE, Gratzel M, J. Phys. Chem. B, 104(8), 1791 (2000)
  7. Ahn SH, Chi WS, Kim DJ, Heo SY, Kim JH, Adv. Funct. Mater., http://dx.doi.org/10.1002/adfm.201203851 (2013)
  8. Mazumdar S, Bhattacharyya AJ, Energy Environ. Sci, http://dx.doi.org/10.1039/C3EE00120B (2013)
  9. Chen L, Zhou Y, Tu W, Li Z, Bao C, Dai H, Yu T, Liu J, Zou Z, Nanoscale, 5, 3481 (2013)
  10. Kamat PV, Acc. Chem. Res., 45, 1906 (2012)
  11. Yan LT, Wu FL, Peng L, Zhang LJ, Li PJ, Dou SY, Li TX, Int. J. Photoenergy, 613969 (2012)
  12. Habibi MH, Askari E, J. Therm. Anal. Calorim., 111, 227 (2013)
  13. Martinson ABF, Elam JW, Hupp JT, Pellin MJ, Nano Lett., 7, 2183 (2007)
  14. Habibi MH, Askari E, J. Adv. Oxid. Technol., 14, 190 (2011)
  15. Ghaedi M, Montazerozohori M, Sahraei R, J. Ind. Eng. Chem., 19(4), 1356 (2013)
  16. Habibi MH, Sheibani R, J. Ind. Eng. Chem., 19(1), 161 (2013)
  17. Habibi MH, Askari E, J. Ind. Eng. Chem., http://dx.doi.org/10.1016/j.jiec.2013.01.003 (2013)
  18. Chen W, Zhang H, Hsing IM, Yang S, Electrochem. Commun., 11, 1057 (2009)
  19. Habibi MH, Askari E, Synth. React. Inorg. Met.-Org. Chem., 43, 406 (2013)
  20. Zhang QF, Dandeneau CS, Zhou XY, Cao GZ, Adv. Mater., 21(41), 4087 (2009)
  21. Habibi MH, Habibi AH, J. Therm. Anal. Calorim., http://dx.doi.org/10.1007/s10973-012-2830-4. (2013)
  22. Habibi MH, Mikhak M, Zendehdel M, Habibi M, Int. J. Electrochem. Sci., 7, 6787 (2012)
  23. Habibi MH, Askari E, Habibi M, Zendehdel M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 104, 197 (2013)
  24. Habibi MH, Habibi AH, Zendehdel M, Habibi M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 110, 226 (2013)
  25. Habibi MH, Karimi B, Zendehdel M, Habibi M, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., http://dx.doi.org/10.1016/j.saa.2013.07.046 (2013)
  26. Sapp SA, Elliott CM, Contado C, Caramori S, Bignozzi CA, J. Am. Chem. Soc., 124(37), 11215 (2002)
  27. Nusbaumer H, Zakeeruddin SM, Moser JE, Gratzel M, Chem. Eur. J., 9, 3756 (2003)
  28. Feldt SM, Gibson EA, Gabrielsson E, Sun L, Boschloo G, Hagfeldt A, J. Am. Chem. Soc., 132(46), 16714 (2010)
  29. Bai Y, Zhang J, Zhou DF, Wang YH, Zhang M, Wang P, J. Am. Chem. Soc., 133(30), 11442 (2011)
  30. Tsao HN, Yi C, Moehl T, Yum JH, ChemSusChem, 4, 591 (2011)
  31. Zhou D, Yu Q, Cai N, Bai Y, Wang Y, Wang P, Energy Environ. Sci., 4, 2030 (2011)
  32. Feldt, Wang SM, Boschloo G, Hagfeldt GA, J. Phys. Chem. C, 115, 21500 (2011)
  33. Hagberg DP, Jiang X, Gabrielsson E, Linder M, Marinado T, Brinck T, Hagfeldt A, Sun L, J. Mater. Chem., 19, 7232 (2009)
  34. Li B, Wang Y, Superlattices Microstruct., 47, 615 (2010)
  35. Liu ZL, Deng JC, Deng JJ, Li FF, Sci. Eng. B, 150, 99 (2008)
  36. Wang JX, Sun XW, Yang Y, Akyaw KK, Huang XY, Yin JZ, Wei J, Demir HV, Nanotechnology, 22, 325704 (2011)
  37. Liu M, Yang J, Feng S, Zhu H, Zhang J, Li G, Peng J, Mater. Lett., 76, 215 (2012)
  38. Khan AF, Mehmood M, Aslam M, Ashraf M, Appl. Surf. Sci., 256(7), 2252 (2010)
  39. Alpuche-Aviles MA, Wu YY, J. Am. Chem. Soc., 131(9), 3216 (2009)
  40. Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng YH, Appl. Catal. B: Environ., 68(1-2), 1 (2006)
  41. Zhang YP, Fei LF, Jiang XD, Pan CX, Wang Y, J. Am. Ceram. Soc., 94(12), 4157 (2011)
  42. Tauc J, Menth A, J. Non-Cryst. Solids, 8, 569 (1972)